This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 21
Filtering by

Clear all filters

Description

The image of “Shostakovich” and the relationships surrounding it in the West during the Cold War can be viewed from several angles. Selected Cold War encounters between the United States and the Soviet Union involving Shostakovich’s music—especially the 1959 New York Philharmonic tour to the USSR—offer insight into three perspectives

The image of “Shostakovich” and the relationships surrounding it in the West during the Cold War can be viewed from several angles. Selected Cold War encounters between the United States and the Soviet Union involving Shostakovich’s music—especially the 1959 New York Philharmonic tour to the USSR—offer insight into three perspectives on Shostakovich symphonies in the Cold War: (1) the direct, (2) the implicit, and (3) the micro/intimate. This heuristic hones our understanding of the various types of relationships cultivated with music during the Cold War, while also widening the discussion of Shostakovich’s symbolic presentation during the conflict.

ContributorsSchmelz, Peter (Contributor) / Herberger Institute for Design and the Arts (Contributor)
Created2015-04-03
127932-Thumbnail Image.png
Description

We study the so-called Descent, or [bar over Q], Equation for the null polygonal supersymmetric Wilson loop in the framework of the pentagon operator product expansion. To properly address this problem, one requires to restore the cyclicity of the loop broken by the choice of OPE channels. In the course

We study the so-called Descent, or [bar over Q], Equation for the null polygonal supersymmetric Wilson loop in the framework of the pentagon operator product expansion. To properly address this problem, one requires to restore the cyclicity of the loop broken by the choice of OPE channels. In the course of the study, we unravel a phenomenon of twist enhancement when passing to a cyclically shifted channel. Currently, we focus on the consistency of the all-order Descent Equation for the particular case relating the NMHV heptagon to MHV hexagon. We find that the equation establishes a relation between contributions of different twists and successfully verify it in perturbation theory making use of available bootstrap predictions for elementary pentagons.

ContributorsBelitsky, Andrei (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-10-24
127938-Thumbnail Image.png
Description

To build 21st century sustainable cities, officials are installing alternative infrastructure technologies to reduce atmospheric environmental problems such as the urban heat island (UHI). The purpose of this study is to further our understanding of how ground-level UHI mitigation strategies in compact urban areas impact air temperatures. The term ‘cool

To build 21st century sustainable cities, officials are installing alternative infrastructure technologies to reduce atmospheric environmental problems such as the urban heat island (UHI). The purpose of this study is to further our understanding of how ground-level UHI mitigation strategies in compact urban areas impact air temperatures. The term ‘cool pavement’ refers to both reflective and porous pavements. While cool pavements are identified as UHI mitigation strategies, we evaluated their in-situ effectiveness on air and surface temperatures. Using a case-control research design, we measured the impact of these pavements on air temperature relative to conventional asphalt in alleys. In locations where high vertical walls constrained the release of solar radiation, reflective pavements increased air temperatures. In two neighborhoods, reflective concrete increased daytime 3-meter air temperatures by 0.9° C and 0.5° C respectively and had no influence on nighttime temperatures. Unlike reflective pavement, porous pavements permit percolation and may contribute to cooling through evaporation. However, our research illustrated that porous asphalt and porous concrete increased maximum daytime air temperatures by 0.8° C and 0.5° C and did not lower nighttime air temperatures. While porous concrete pavers had significantly warmer midday air temperatures, it was the only cool pavement strategy to yield lower early evening air temperatures relative to conventional asphalt. Even immediately after rain events, the air temperatures above the porous pavements were not significantly cooler. This research demonstrates our need to evaluate real world installations of cool pavement to determine their actual impact on decreasing summertime temperatures.

ContributorsCoseo, Paul (Author) / Larsen, Larissa (Author) / Herberger Institute for Design and the Arts (Contributor)
Created2015-09-14
127905-Thumbnail Image.png
Description

We present a new approach to computing event shape distributions or, more precisely, charge flow correlations in a generic conformal field theory (CFT). These infrared finite observables are familiar from collider physics studies and describe the angular distribution of global charges in outgoing radiation created from the vacuum by some

We present a new approach to computing event shape distributions or, more precisely, charge flow correlations in a generic conformal field theory (CFT). These infrared finite observables are familiar from collider physics studies and describe the angular distribution of global charges in outgoing radiation created from the vacuum by some source. The charge flow correlations can be expressed in terms of Wightman correlation functions in a certain limit. We explain how to compute these quantities starting from their Euclidean analogues by means of a nontrivial analytic continuation which, in the framework of CFT, can be performed elegantly in Mellin space. The relation between the charge flow correlations and Euclidean correlation functions can be reformulated directly in configuration space, bypassing the Mellin representation, as a certain Lorentzian double discontinuity of the correlation function integrated along the cuts. We illustrate the general formalism in N = 4 SYM, making use of the well-known results on the four-point correlation function of half-BPS scalar operators. We compute the double scalar flow correlation in N = 4 SYM, at weak and strong coupling and show that it agrees with known results obtained by different techniques. One of the remarkable features of the N = 4 theory is that the scalar and energy flow correlations are proportional to each other. Imposing natural physical conditions on the energy flow correlations (finiteness, positivity and regularity), we formulate additional constraints on the four-point correlation functions in N = 4SYM that should be valid at any coupling and away from the planar limit.

ContributorsBelitsky, Andrei (Author) / Hohenegger, S. (Author) / Korchemsky, G. P. (Author) / Sokatchev, E. (Author) / Zhiboedov, A. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-04-30
127909-Thumbnail Image.png
Description

We analyze the near-collinear limit of the null polygonal hexagon super Wilson loop in the planar N = 4 super-Yang–Mills theory. We focus on its Grassmann components which are dual to next-to-maximal helicity-violating (NMHV) scattering amplitudes. The kinematics in question is studied within a framework of the operator product expansion

We analyze the near-collinear limit of the null polygonal hexagon super Wilson loop in the planar N = 4 super-Yang–Mills theory. We focus on its Grassmann components which are dual to next-to-maximal helicity-violating (NMHV) scattering amplitudes. The kinematics in question is studied within a framework of the operator product expansion that encodes propagation of excitations on the background of the color flux tube stretched between the sides of Wilson loop contour. While their dispersion relation is known to all orders in 't Hooft coupling from previous studies, we find their form factor couplings to the Wilson loop. This is done making use of a particular tessellation of the loop where pentagon transitions play a fundamental role. Being interested in NMHV amplitudes, the corresponding building blocks carry a nontrivial charge under the SU(4) R-symmetry group. Restricting the current consideration to twist-two accuracy, we analyze two-particle contributions with a fermion as one of the constituents in the pair. We demonstrate that these nonsinglet pentagons obey bootstrap equations that possess consistent solutions for any value of the coupling constant. To confirm the correctness of these predictions, we calculate their contribution to the super Wilson loop demonstrating agreement with recent results to four-loop order in 't Hooft coupling.

ContributorsBelitsky, Andrei (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-03-05
127911-Thumbnail Image.png
Description

This study dealt with emotional responses elicited by certain products, which helped to understand the attributes of the product leading to emotional responses. Emotional Design is a way of design that is using emotions generated by people as reference and measurement. Making good use of emotional design could let the

This study dealt with emotional responses elicited by certain products, which helped to understand the attributes of the product leading to emotional responses. Emotional Design is a way of design that is using emotions generated by people as reference and measurement. Making good use of emotional design could let the user discover resonance in the interaction between user and product, which could help the product to be more attractive to users. This research proposes to apply qualitative research method to uncover the secrets of emotional bonds between users and products This study also offered an useful tool to examine the strength and weakness of a certain product from perspective of emotion, and the insights could help designers to refine the product to become emotional attractive, thus create better user experience and bigger opportunity for the product on the market in the future.

ContributorsShin, Dosun (Author) / Wang, Zheng (Author) / Herberger Institute for Design and the Arts (Contributor)
Created2015-10-23
127914-Thumbnail Image.png
Description

We study event shapes in N = 4SYM describing the angular distribution of energy and R-charge in the final states created by the simplest half-BPS scalar operator. Applying the approach developed in the companion paper arXiv:1309.0769, we compute these observables using the correlation functions of certain components of the N

We study event shapes in N = 4SYM describing the angular distribution of energy and R-charge in the final states created by the simplest half-BPS scalar operator. Applying the approach developed in the companion paper arXiv:1309.0769, we compute these observables using the correlation functions of certain components of the N = 4 stress-tensor supermultiplet: the half-BPS operator itself, the R-symmetry current and the stress tensor. We present master formulas for the all-order event shapes as convolutions of the Mellin amplitude defining the correlation function of the half-BPS operators, with a coupling-independent kernel determined by the choice of the observable. We find remarkably simple relations between various event shapes following from N = 4 superconformal symmetry. We perform thorough checks at leading order in the weak coupling expansion and show perfect agreement with the conventional calculations based on amplitude techniques. We extend our results to strong coupling using the correlation function of half-BPS operators obtained from the AdS/CFT correspondence.

ContributorsBelitsky, Andrei (Author) / Hohenegger, S. (Author) / Korchemsky, G. P. (Author) / Sokatchev, E. (Author) / Zhiboedov, A. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-04-30
127838-Thumbnail Image.png
Description

We compute one-loop renormalization group equations for non-singlet twist-four operators in QCD. The calculation heavily relies on the light-cone gauge formalism in the momentum fraction space that essentially rephrases the analysis of all two-to-two and two-to-three transition kernels to purely algebraic manipulations both for non- and quasipartonic operators. This is

We compute one-loop renormalization group equations for non-singlet twist-four operators in QCD. The calculation heavily relies on the light-cone gauge formalism in the momentum fraction space that essentially rephrases the analysis of all two-to-two and two-to-three transition kernels to purely algebraic manipulations both for non- and quasipartonic operators. This is the first brute force calculation of this sector available in the literature. Fourier transforming our findings to the coordinate space, we checked them against available results obtained within a conformal symmetry-based formalism that bypasses explicit diagrammatic calculations and confirmed agreement with the latter.

ContributorsJi, Yao (Author) / Belitsky, Andrei (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-03-06
127844-Thumbnail Image.png
Description

Scattering amplitudes in maximally supersymmetric gauge theory are dual to super-Wilson loops on null polygonal contours. The operator product expansion for the latter revealed that their dynamics is governed by the evolution of multiparticle GKP excitations. They were shown to emerge from the spectral problem of an underlying open spin

Scattering amplitudes in maximally supersymmetric gauge theory are dual to super-Wilson loops on null polygonal contours. The operator product expansion for the latter revealed that their dynamics is governed by the evolution of multiparticle GKP excitations. They were shown to emerge from the spectral problem of an underlying open spin chain. In this work we solve this model with the help of the Baxter Q-operator and Sklyanin's Separation of Variables methods. We provide an explicit construction for eigenfunctions and eigenvalues of GKP excitations. We demonstrate how the former define the so-called multiparticle hexagon transitions in super-Wilson loops and prove their factorized form at leading order of 't Hooft coupling for particle number-preserving transitions that were suggested earlier in a generic case.

ContributorsBelitsky, Andrei (Author) / Derkachov, S. E. (Author) / Manashov, A. N. (Author)
Created2014-03-14
127860-Thumbnail Image.png
Description

We address the near-collinear expansion of multiparticle NMHV amplitudes, namely, the heptagon and octagons in the dual language of null polygonal super Wilson loops. In particular, we verify multiparticle factorization of charged pentagon transitions in terms of pentagons for single flux-tube excitations within the framework of refined operator product expansion.

We address the near-collinear expansion of multiparticle NMHV amplitudes, namely, the heptagon and octagons in the dual language of null polygonal super Wilson loops. In particular, we verify multiparticle factorization of charged pentagon transitions in terms of pentagons for single flux-tube excitations within the framework of refined operator product expansion. We find a perfect agreement with available tree and one-loop data.

ContributorsBelitsky, Andrei (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-06-03