This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 18
Filtering by

Clear all filters

129363-Thumbnail Image.png
Description

Explosive extrusion of cold material from the interior of icy bodies, or cryovolcanism, has been observed on Enceladus and, perhaps, Europa, Triton, and Ceres. It may explain the observed evidence for a young surface on Charon (Pluto’s surface is masked by frosts). Here, we evaluate prerequisites for cryovolcanism on dwarf

Explosive extrusion of cold material from the interior of icy bodies, or cryovolcanism, has been observed on Enceladus and, perhaps, Europa, Triton, and Ceres. It may explain the observed evidence for a young surface on Charon (Pluto’s surface is masked by frosts). Here, we evaluate prerequisites for cryovolcanism on dwarf planet-class Kuiper belt objects (KBOs). We first review the likely spatial and temporal extent of subsurface liquid, proposed mechanisms to overcome the negative buoyancy of liquid water in ice, and the volatile inventory of KBOs. We then present a new geochemical equilibrium model for volatile exsolution and its ability to drive upward crack propagation. This novel approach bridges geophysics and geochemistry, and extends geochemical modeling to the seldom-explored realm of liquid water at subzero temperatures. We show that carbon monoxide (CO) is a key volatile for gas-driven fluid ascent; whereas CO2 and sulfur gases only play a minor role. N2, CH4, and H2 exsolution may also drive explosive cryovolcanism if hydrothermal activity produces these species in large amounts (a few percent with respect to water). Another important control on crack propagation is the internal structure: a hydrated core makes explosive cryovolcanism easier, but an undifferentiated crust does not. We briefly discuss other controls on ascent such as fluid freezing on crack walls, and outline theoretical advances necessary to better understand cryovolcanic processes. Finally, we make testable predictions for the 2015 New Horizons flyby of the Pluto-Charon system.

ContributorsNeveu, Marc (Author) / Desch, Steven (Author) / Shock, Everett (Author) / Glein, C. R. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-01-15
128925-Thumbnail Image.png
Description

Uncovering the chemical and physical links between natural environments and microbial communities is becoming increasingly amenable owing to geochemical observations and metagenomic sequencing. At the hot spring known as Bison Pool in Yellowstone National Park, the cooling of the water in the outflow channel is associated with an increase in

Uncovering the chemical and physical links between natural environments and microbial communities is becoming increasingly amenable owing to geochemical observations and metagenomic sequencing. At the hot spring known as Bison Pool in Yellowstone National Park, the cooling of the water in the outflow channel is associated with an increase in oxidation potential estimated from multiple field-based measurements. Representative groups of proteins whose sequences were derived from metagenomic data also exhibit an increase in average oxidation state of carbon in the protein molecules with distance from the hot-spring source. The energetic requirements of reactions to form selected proteins used in the model were computed using amino-acid group additivity for the standard molal thermodynamic properties of the proteins, and the relative chemical stabilities of the proteins were investigated by varying temperature, pH and oxidation state, expressed as activity of dissolved hydrogen. The relative stabilities of the proteins were found to track the locations of the sampling sites when the calculations included a function for hydrogen activity that increases with temperature and is higher, or more reducing, than values consistent with measurements of dissolved oxygen, sulfide and oxidation-reduction potential in the field. These findings imply that spatial patterns in the amino acid compositions of proteins can be linked, through energetics of overall chemical reactions representing the formation of the proteins, to the environmental conditions at this hot spring, even if microbial cells maintain considerably different internal conditions. Further applications of the thermodynamic calculations are possible for other natural microbial ecosystems.

ContributorsDick, Jeffrey (Author) / Shock, Everett (Author) / College of Liberal Arts and Sciences (Contributor)
Created2011-08-11
Description

The image of “Shostakovich” and the relationships surrounding it in the West during the Cold War can be viewed from several angles. Selected Cold War encounters between the United States and the Soviet Union involving Shostakovich’s music—especially the 1959 New York Philharmonic tour to the USSR—offer insight into three perspectives

The image of “Shostakovich” and the relationships surrounding it in the West during the Cold War can be viewed from several angles. Selected Cold War encounters between the United States and the Soviet Union involving Shostakovich’s music—especially the 1959 New York Philharmonic tour to the USSR—offer insight into three perspectives on Shostakovich symphonies in the Cold War: (1) the direct, (2) the implicit, and (3) the micro/intimate. This heuristic hones our understanding of the various types of relationships cultivated with music during the Cold War, while also widening the discussion of Shostakovich’s symbolic presentation during the conflict.

ContributorsSchmelz, Peter (Contributor) / Herberger Institute for Design and the Arts (Contributor)
Created2015-04-03
128916-Thumbnail Image.png
Description

We have constructed a conceptual model of biogeochemical cycles and metabolic and microbial community shifts within a hot spring ecosystem via coordinated analysis of the “Bison Pool” (BP) Environmental Genome and a complementary contextual geochemical dataset of ∼75 geochemical parameters. 2,321 16S rRNA clones and 470 megabases of environmental sequence

We have constructed a conceptual model of biogeochemical cycles and metabolic and microbial community shifts within a hot spring ecosystem via coordinated analysis of the “Bison Pool” (BP) Environmental Genome and a complementary contextual geochemical dataset of ∼75 geochemical parameters. 2,321 16S rRNA clones and 470 megabases of environmental sequence data were produced from biofilms at five sites along the outflow of BP, an alkaline hot spring in Sentinel Meadow (Lower Geyser Basin) of Yellowstone National Park. This channel acts as a >22 m gradient of decreasing temperature, increasing dissolved oxygen, and changing availability of biologically important chemical species, such as those containing nitrogen and sulfur. Microbial life at BP transitions from a 92°C chemotrophic streamer biofilm community in the BP source pool to a 56°C phototrophic mat community. We improved automated annotation of the BP environmental genomes using BLAST-based Markov clustering. We have also assigned environmental genome sequences to individual microbial community members by complementing traditional homology-based assignment with nucleotide word-usage algorithms, allowing more than 70% of all reads to be assigned to source organisms. This assignment yields high genome coverage in dominant community members, facilitating reconstruction of nearly complete metabolic profiles and in-depth analysis of the relation between geochemical and metabolic changes along the outflow. We show that changes in environmental conditions and energy availability are associated with dramatic shifts in microbial communities and metabolic function. We have also identified an organism constituting a novel phylum in a metabolic “transition” community, located physically between the chemotroph- and phototroph-dominated sites. The complementary analysis of biogeochemical and environmental genomic data from BP has allowed us to build ecosystem-based conceptual models for this hot spring, reconstructing whole metabolic networks in order to illuminate community roles in shaping and responding to geochemical variability.

ContributorsSwingley, Wesley D. (Author) / Meyer-Dombard, D'Arcy R. (Author) / Shock, Everett (Author) / Alsop, Eric (Author) / Falenski, Heinz (Author) / Havig, Jeff (Author) / Raymond, Jason (Author) / College of Liberal Arts and Sciences (Contributor)
Created2012-06-04
128833-Thumbnail Image.png
Description

Over 100 hot spring sediment samples were collected from 28 sites in 12 areas/regions, while recording as many coincident geochemical properties as feasible (>60 analytes). PCR was used to screen samples for Korarchaeota 16S rRNA genes. Over 500 Korarchaeota 16S rRNA genes were screened by RFLP analysis and 90 were

Over 100 hot spring sediment samples were collected from 28 sites in 12 areas/regions, while recording as many coincident geochemical properties as feasible (>60 analytes). PCR was used to screen samples for Korarchaeota 16S rRNA genes. Over 500 Korarchaeota 16S rRNA genes were screened by RFLP analysis and 90 were sequenced, resulting in identification of novel Korarchaeota phylotypes and exclusive geographical variants. Korarchaeota diversity was low, as in other terrestrial geothermal systems, suggesting a marine origin for Korarchaeota with subsequent niche-invasion into terrestrial systems. Korarchaeota endemism is consistent with endemism of other terrestrial thermophiles and supports the existence of dispersal barriers. Korarchaeota were found predominantly in >55°C springs at pH 4.7–8.5 at concentrations up to 6.6×106 16S rRNA gene copies g-1 wet sediment. In Yellowstone National Park (YNP), Korarchaeota were most abundant in springs with a pH range of 5.7 to 7.0. High sulfate concentrations suggest these fluids are influenced by contributions from hydrothermal vapors that may be neutralized to some extent by mixing with water from deep geothermal sources or meteoric water. In the Great Basin (GB), Korarchaeota were most abundant at spring sources of pH<7.2 with high particulate C content and high alkalinity, which are likely to be buffered by the carbonic acid system. It is therefore likely that at least two different geological mechanisms in YNP and GB springs create the neutral to mildly acidic pH that is optimal for Korarchaeota. A classification support vector machine (C-SVM) trained on single analytes, two analyte combinations, or vectors from non-metric multidimensional scaling models was able to predict springs as Korarchaeota-optimal or sub-optimal habitats with accuracies up to 95%. To our knowledge, this is the most extensive analysis of the geochemical habitat of any high-level microbial taxon and the first application of a C-SVM to microbial ecology.

ContributorsMiller-Coleman, Robin L. (Author) / Dodsworth, Jeremy A. (Author) / Ross, Christian A. (Author) / Shock, Everett (Author) / Williams, Amanda (Author) / Hartnett, Hilairy (Author) / McDonald, Austin I. (Author) / Havig, Jeff (Author) / Hedlund, Brian P. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2012-05-04
128183-Thumbnail Image.png
Description

Streamer biofilm communities (SBC) are often observed within chemosynthetic zones of Yellowstone hot spring outflow channels, where temperatures exceed those conducive to photosynthesis. Nearest the hydrothermal source (75–88°C) SBC comprise thermophilic Archaea and Bacteria, often mixed communities including Desulfurococcales and uncultured Crenarchaeota, as well as Aquificae and Thermus, each carrying

Streamer biofilm communities (SBC) are often observed within chemosynthetic zones of Yellowstone hot spring outflow channels, where temperatures exceed those conducive to photosynthesis. Nearest the hydrothermal source (75–88°C) SBC comprise thermophilic Archaea and Bacteria, often mixed communities including Desulfurococcales and uncultured Crenarchaeota, as well as Aquificae and Thermus, each carrying diagnostic membrane lipid biomarkers. We tested the hypothesis that SBC can alternate their metabolism between autotrophy and heterotrophy depending on substrate availability. Feeding experiments were performed at two alkaline hot springs in Yellowstone National Park: Octopus Spring and “Bison Pool,” using various 13C-labeled substrates (bicarbonate, formate, acetate, and glucose) to determine the relative uptake of these different carbon sources. Highest 13C uptake, at both sites, was from acetate into almost all bacterial fatty acids, particularly into methyl-branched C15, C17 and C19 fatty acids that are diagnostic for Thermus/Meiothermus, and some Firmicutes as well as into universally common C16:0 and C18:0 fatty acids. 13C-glucose showed a similar, but a 10–30 times lower uptake across most fatty acids. 13C-bicarbonate uptake, signifying the presence of autotrophic communities was only significant at “Bison Pool” and was observed predominantly in non-specific saturated C16, C18, C20, and C22 fatty acids. Incorporation of 13C-formate occurred only at very low rates at “Bison Pool” and was almost undetectable at Octopus Spring, suggesting that formate is not an important carbon source for SBC. 13C-uptake into archaeal lipids occurred predominantly with 13C-acetate, suggesting also that archaeal communities at both springs have primarily heterotrophic carbon assimilation pathways. We hypothesize that these communities are energy-limited and predominantly nurtured by input of exogenous organic material, with only a small fraction being sustained by autotrophic growth.

ContributorsSchubotz, Florence (Author) / Hays, Lindsay E. (Author) / Meyer-Dombard, D'Arcy R. (Author) / Gillespie, Aimee (Author) / Shock, Everett (Author) / Summons, Roger E. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-02-05
129628-Thumbnail Image.png
Description

Carbon can be a major constituent of crustal and mantle fluids, occurring both as dissolved ionic species (e.g., carbonate ions or organic acids) and molecular species (e.g., CO2, CO, CH4, and more complex organic compounds). The chemistry of dissolved carbon changes dramatically with pressure (P) and temperature (T). In aqueous

Carbon can be a major constituent of crustal and mantle fluids, occurring both as dissolved ionic species (e.g., carbonate ions or organic acids) and molecular species (e.g., CO2, CO, CH4, and more complex organic compounds). The chemistry of dissolved carbon changes dramatically with pressure (P) and temperature (T). In aqueous fluids at low P and T, molecular carbon gas species such as CO2 and CH4 saturate at low concentration to form a separate phase. With modest increases in P and T, these molecular species become fully miscible with H2O, enabling deep crustal and mantle fluids to become highly concentrated in carbon. At such high concentrations, carbon species play an integral role as solvent components and, with H2O, control the mobility of rock-forming elements in a wide range of geologic settings. The migration of carbon-bearing crustal and mantle fluids contributes to Earth’s carbon cycle; however, the mechanisms, magnitudes, and time variations of carbon transfer from depth to the surface remain least understood parts of the global carbon budget (Berner 1991, 1994; Berner and Kothavala 2001).

ContributorsManning, Craig E. (Author) / Shock, Everett (Author) / Sverjensky, Dimitri A. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013
127938-Thumbnail Image.png
Description

To build 21st century sustainable cities, officials are installing alternative infrastructure technologies to reduce atmospheric environmental problems such as the urban heat island (UHI). The purpose of this study is to further our understanding of how ground-level UHI mitigation strategies in compact urban areas impact air temperatures. The term ‘cool

To build 21st century sustainable cities, officials are installing alternative infrastructure technologies to reduce atmospheric environmental problems such as the urban heat island (UHI). The purpose of this study is to further our understanding of how ground-level UHI mitigation strategies in compact urban areas impact air temperatures. The term ‘cool pavement’ refers to both reflective and porous pavements. While cool pavements are identified as UHI mitigation strategies, we evaluated their in-situ effectiveness on air and surface temperatures. Using a case-control research design, we measured the impact of these pavements on air temperature relative to conventional asphalt in alleys. In locations where high vertical walls constrained the release of solar radiation, reflective pavements increased air temperatures. In two neighborhoods, reflective concrete increased daytime 3-meter air temperatures by 0.9° C and 0.5° C respectively and had no influence on nighttime temperatures. Unlike reflective pavement, porous pavements permit percolation and may contribute to cooling through evaporation. However, our research illustrated that porous asphalt and porous concrete increased maximum daytime air temperatures by 0.8° C and 0.5° C and did not lower nighttime air temperatures. While porous concrete pavers had significantly warmer midday air temperatures, it was the only cool pavement strategy to yield lower early evening air temperatures relative to conventional asphalt. Even immediately after rain events, the air temperatures above the porous pavements were not significantly cooler. This research demonstrates our need to evaluate real world installations of cool pavement to determine their actual impact on decreasing summertime temperatures.

ContributorsCoseo, Paul (Author) / Larsen, Larissa (Author) / Herberger Institute for Design and the Arts (Contributor)
Created2015-09-14
127911-Thumbnail Image.png
Description

This study dealt with emotional responses elicited by certain products, which helped to understand the attributes of the product leading to emotional responses. Emotional Design is a way of design that is using emotions generated by people as reference and measurement. Making good use of emotional design could let the

This study dealt with emotional responses elicited by certain products, which helped to understand the attributes of the product leading to emotional responses. Emotional Design is a way of design that is using emotions generated by people as reference and measurement. Making good use of emotional design could let the user discover resonance in the interaction between user and product, which could help the product to be more attractive to users. This research proposes to apply qualitative research method to uncover the secrets of emotional bonds between users and products This study also offered an useful tool to examine the strength and weakness of a certain product from perspective of emotion, and the insights could help designers to refine the product to become emotional attractive, thus create better user experience and bigger opportunity for the product on the market in the future.

ContributorsShin, Dosun (Author) / Wang, Zheng (Author) / Herberger Institute for Design and the Arts (Contributor)
Created2015-10-23
127834-Thumbnail Image.png
Description

Communicating climate risks is crucial when engaging the public to support climate action planning and addressing climate justice. How does evidence-based communication influence local residents’ risk perception and potential behavior change in support of climate planning? Built upon our previous study of Climate Justice maps illustrating high scores of both

Communicating climate risks is crucial when engaging the public to support climate action planning and addressing climate justice. How does evidence-based communication influence local residents’ risk perception and potential behavior change in support of climate planning? Built upon our previous study of Climate Justice maps illustrating high scores of both social and ecological vulnerability in Michigan’s Huron River watershed, USA, a quasi-experiment was conducted to examine the effects of Climate Justice mapping intervention on residents’ perceptions and preparedness for climate change associated hazards in Michigan. Two groups were compared: residents in Climate Justice areas with high social and ecological vulnerability scores in the watershed (n=76) and residents in comparison areas in Michigan (n=69). Measurements for risk perception include perceived exposure, sensitivity, and adaptability to hazards. Results indicate that risk information has a significant effect on perceived sensitivity and level of preparedness for future climate extremes among participants living in Climate Justice areas. Findings highlight the value of integrating scientific risk assessment information in risk communication to align calculated and perceived risks. This study suggests effective risk communication can influence local support of climate action plans and implementation of strategies that address climate justice and achieve social sustainability in local communities.

ContributorsCheng, Chingwen (Author) / Tsai, Jiun-Yi (Author) / Yang, Y. C. Ethan (Author) / Esselman, Rebecca (Author) / Kalcic, Margaret (Author) / Xu, Xin (Author) / Mohai, Paul (Author) / Herberger Institute for Design and the Arts (Contributor)
Created2017-10-12