This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 49
Filtering by

Clear all filters

141473-Thumbnail Image.png
Description

Critical flicker fusion thresholds (CFFTs) describe when quick amplitude modulations of a light source become undetectable as the frequency of the modulation increases and are thought to underlie a number of visual processing skills, including reading. Here, we compare the impact of two vision-training approaches, one involving contrast sensitivity training

Critical flicker fusion thresholds (CFFTs) describe when quick amplitude modulations of a light source become undetectable as the frequency of the modulation increases and are thought to underlie a number of visual processing skills, including reading. Here, we compare the impact of two vision-training approaches, one involving contrast sensitivity training and the other directional dot-motion training, compared to an active control group trained on Sudoku. The three training paradigms were compared on their effectiveness for altering CFFT. Directional dot-motion and contrast sensitivity training resulted in significant improvement in CFFT, while the Sudoku group did not yield significant improvement. This finding indicates that dot-motion and contrast sensitivity training similarly transfer to effect changes in CFFT. The results, combined with prior research linking CFFT to high-order cognitive processes such as reading ability, and studies showing positive impact of both dot-motion and contrast sensitivity training in reading, provide a possible mechanistic link of how these different training approaches impact reading abilities.

ContributorsZhou, Tianyou (Author) / Nanez, Jose (Author) / Zimmerman, Daniel (Author) / Holloway, Steven (Author) / Seitz, Aaron (Author) / New College of Interdisciplinary Arts and Sciences (Contributor)
Created2016-10-26
141474-Thumbnail Image.png
Description

Although autism spectrum disorder (ASD) is a serious lifelong condition, its underlying neural mechanism remains unclear. Recently, neuroimaging-based classifiers for ASD and typically developed (TD) individuals were developed to identify the abnormality of functional connections (FCs). Due to over-fitting and interferential effects of varying measurement conditions and demographic distributions, no

Although autism spectrum disorder (ASD) is a serious lifelong condition, its underlying neural mechanism remains unclear. Recently, neuroimaging-based classifiers for ASD and typically developed (TD) individuals were developed to identify the abnormality of functional connections (FCs). Due to over-fitting and interferential effects of varying measurement conditions and demographic distributions, no classifiers have been strictly validated for independent cohorts. Here we overcome these difficulties by developing a novel machine-learning algorithm that identifies a small number of FCs that separates ASD versus TD. The classifier achieves high accuracy for a Japanese discovery cohort and demonstrates a remarkable degree of generalization for two independent validation cohorts in the USA and Japan. The developed ASD classifier does not distinguish individuals with major depressive disorder and attention-deficit hyperactivity disorder from their controls but moderately distinguishes patients with schizophrenia from their controls. The results leave open the viable possibility of exploring neuroimaging-based dimensions quantifying the multiple-disorder spectrum.

ContributorsYahata, Noriaki (Author) / Morimoto, Jun (Author) / Hashimoto, Ryuichiro (Author) / Lisi, Giuseppe (Author) / Shibata, Kazuhisa (Author) / Kawakubo, Yuki (Author) / Kuwabara, Hitoshi (Author) / Kuroda, Miho (Author) / Yamada, Takashi (Author) / Megumi, Fukuda (Author) / Imamizu, Hiroshi (Author) / Nanez, Jose (Author) / Takahashi, Hidehiko (Author) / Okamoto, Yasumasa (Author) / Kasai, Kiyoto (Author) / Kato, Nobumasa (Author) / Sasaki, Yuka (Author) / Watanabe, Takeo (Author) / Kawato, Mitsuo (Author) / New College of Interdisciplinary Arts and Sciences (Contributor)
Created2016-04-14
Description

Background: Cancer diagnosis in both dogs and humans is complicated by the lack of a non-invasive diagnostic test. To meet this clinical need, we apply the recently developed immunosignature assay to spontaneous canine lymphoma as clinical proof-of-concept. Here we evaluate the immunosignature as a diagnostic for spontaneous canine lymphoma at both

Background: Cancer diagnosis in both dogs and humans is complicated by the lack of a non-invasive diagnostic test. To meet this clinical need, we apply the recently developed immunosignature assay to spontaneous canine lymphoma as clinical proof-of-concept. Here we evaluate the immunosignature as a diagnostic for spontaneous canine lymphoma at both at initial diagnosis and evaluating the disease free interval following treatment.

Methods: Sera from dogs with confirmed lymphoma (B cell n = 38, T cell n = 11) and clinically normal dogs (n = 39) were analyzed. Serum antibody responses were characterized by analyzing the binding pattern, or immunosignature, of serum antibodies on a non-natural sequence peptide microarray. Peptides were selected and tested for the ability to distinguish healthy dogs from those with lymphoma and to distinguish lymphoma subtypes based on immunophenotype. The immunosignature of dogs with lymphoma were evaluated for individual signatures. Changes in the immunosignatures were evaluated following treatment and eventual relapse.

Results: Despite being a clonal disease, both an individual immunosignature and a generalized lymphoma immunosignature were observed in each dog. The general lymphoma immunosignature identified in the initial set of dogs (n = 32) was able to predict disease status in an independent set of dogs (n = 42, 97% accuracy). A separate immunosignature was able to distinguish the lymphoma based on immunophenotype (n = 25, 88% accuracy). The individual immunosignature was capable of confirming remission three months following diagnosis. Immunosignature at diagnosis was able to predict which dogs with B cell lymphoma would relapse in less than 120 days (n = 33, 97% accuracy).

Conclusion: We conclude that the immunosignature can serve as a multilevel diagnostic for canine, and potentially human, lymphoma.

ContributorsJohnston, Stephen (Author) / Thamm, Douglas H. (Author) / Legutki, Joseph Barten (Author) / Biodesign Institute (Contributor)
Created2014-09-08
Description

This essay uses census data from the eighteenth century to examine the leadership role of caciques in the Guaraní missions. Cacique succession between 1735 and 1759 confirms that the position of cacique transitioned from the Guaraníes’ flexible interpretation of hereditary succession to the Jesuits’ rigid idea of primogenitor (father to

This essay uses census data from the eighteenth century to examine the leadership role of caciques in the Guaraní missions. Cacique succession between 1735 and 1759 confirms that the position of cacique transitioned from the Guaraníes’ flexible interpretation of hereditary succession to the Jesuits’ rigid idea of primogenitor (father to eldest son) succession. This essay argues that scholars overstate the caciques’ leadership role in the Guaraní missions. Adherence to primogenitor succession did not take into account a candidate's leadership qualities, and thus, some caciques functioned as placeholders for organizing the mission population and calculating tribute and not as active leaders. An assortment of other Guaraní leadership positions compensated for this weakness by providing both access to leadership roles for non-caciques who possessed leadership qualities but not the proper bloodline and additional leadership opportunities for more capable caciques. By taking into account leadership qualities and not just descent, these positions provided flexibility and reflected continuity with pre-contact Guaraní ideas about leadership.

Created2013-11-30
128871-Thumbnail Image.png
Description

Antigen-antibody complexes are central players in an effective immune response. However, finding those interactions relevant to a particular disease state can be arduous. Nonetheless many paths to discovery have been explored since deciphering these interactions can greatly facilitate the development of new diagnostics, therapeutics, and vaccines. In silico B cell

Antigen-antibody complexes are central players in an effective immune response. However, finding those interactions relevant to a particular disease state can be arduous. Nonetheless many paths to discovery have been explored since deciphering these interactions can greatly facilitate the development of new diagnostics, therapeutics, and vaccines. In silico B cell epitope mapping approaches have been widely pursued, though success has not been consistent. Antibody mixtures in immune sera have been used as handles for biologically relevant antigens, but these and other experimental approaches have proven resource intensive and time consuming. In addition, these methods are often tailored to individual diseases or a specific proteome, rather than providing a universal platform. Most of these methods are not able to identify the specific antibody’s epitopes from unknown antigens, such as un-annotated neo antigens in cancer. Alternatively, a peptide library comprised of sequences unrestricted by naturally-found protein space provides for a universal search for mimotopes of an antibody’s epitope. Here we present the utility of such a non-natural random sequence library of 10,000 peptides physically addressed on a microarray for mimotope discovery without sequence information of the specific antigen. The peptide arrays were probed with serum from an antigen-immunized rabbit, or alternatively probed with serum pre-absorbed with the same immunizing antigen. With this positive and negative screening scheme, we identified the library-peptides as the mimotopes of the antigen. The unique library peptides were successfully used to isolate antigen-specific antibodies from complete immune serum. Sequence analysis of these peptides revealed the epitopes in the immunized antigen. We present this method as an inexpensive, efficient method for identifying mimotopes of any antibody’s targets. These mimotopes should be useful in defining both components of the antigen-antibody complex.

ContributorsWhittemore, Kurt (Author) / Johnston, Stephen (Author) / Sykes, Kathryn (Author) / Shen, Luhui (Author) / Biodesign Institute (Contributor)
Created2016-06-14
128994-Thumbnail Image.png
Description

Background: The success of new sequencing technologies and informatic methods for identifying genes has made establishing gene product function a critical rate limiting step in progressing the molecular sciences. We present a method to functionally mine genomes for useful activities in vivo, using an unusual property of a member of the

Background: The success of new sequencing technologies and informatic methods for identifying genes has made establishing gene product function a critical rate limiting step in progressing the molecular sciences. We present a method to functionally mine genomes for useful activities in vivo, using an unusual property of a member of the poxvirus family to demonstrate this screening approach.

Results: The genome of Parapoxvirus ovis (Orf virus) was sequenced, annotated, and then used to PCR-amplify its open-reading-frames. Employing a cloning-independent protocol, a viral expression-library was rapidly built and arrayed into sub-library pools. These were directly delivered into mice as expressible cassettes and assayed for an immune-modulating activity associated with parapoxvirus infection. The product of the B2L gene, a homolog of vaccinia F13L, was identified as the factor eliciting immune cell accumulation at sites of skin inoculation. Administration of purified B2 protein also elicited immune cell accumulation activity, and additionally was found to serve as an adjuvant for antigen-specific responses. Co-delivery of the B2L gene with an influenza gene-vaccine significantly improved protection in mice. Furthermore, delivery of the B2L expression construct, without antigen, non-specifically reduced tumor growth in murine models of cancer.

Conclusion: A streamlined, functional approach to genome-wide screening of a biological activity in vivo is presented. Its application to screening in mice for an immune activity elicited by the pathogen genome of Parapoxvirus ovis yielded a novel immunomodulator. In this inverted discovery method, it was possible to identify the adjuvant responsible for a function of interest prior to a mechanistic study of the adjuvant. The non-specific immune activity of this modulator, B2, is similar to that associated with administration of inactivated particles to a host or to a live viral infection. Administration of B2 may provide the opportunity to significantly impact host immunity while being itself only weakly recognized. The functional genomics method used to pinpoint B2 within an ORFeome may be more broadly applicable to screening for other biological activities in an animal.

ContributorsMcGuire, Michael J. (Author) / Johnston, Stephen (Author) / Sykes, Kathryn (Author) / Biodesign Institute (Contributor)
Created2012-01-13
128931-Thumbnail Image.png
Description

Multitrophic communities that maintain the functionality of the extreme Antarctic terrestrial ecosystems, while the simplest of any natural community, are still challenging our knowledge about the limits to life on earth. In this study, we describe and interpret the linkage between the diversity of different trophic level communities to the

Multitrophic communities that maintain the functionality of the extreme Antarctic terrestrial ecosystems, while the simplest of any natural community, are still challenging our knowledge about the limits to life on earth. In this study, we describe and interpret the linkage between the diversity of different trophic level communities to the geological morphology and soil geochemistry in the remote Transantarctic Mountains (Darwin Mountains, 80°S). We examined the distribution and diversity of biota (bacteria, cyanobacteria, lichens, algae, invertebrates) with respect to elevation, age of glacial drift sheets, and soil physicochemistry. Results showed an abiotic spatial gradient with respect to the diversity of the organisms across different trophic levels. More complex communities, in terms of trophic level diversity, were related to the weakly developed younger drifts (Hatherton and Britannia) with higher soil C/N ratio and lower total soluble salts content (thus lower conductivity). Our results indicate that an increase of ion concentration from younger to older drift regions drives a succession of complex to more simple communities, in terms of number of trophic levels and diversity within each group of organisms analysed. This study revealed that integrating diversity across multi-trophic levels of biotic communities with abiotic spatial heterogeneity and geological history is fundamental to understand environmental constraints influencing biological distribution in Antarctic soil ecosystems.

ContributorsMagalhaes, Catarina (Author) / Stevens, Mark I. (Author) / Cary, S. Craig (Author) / Ball, Becky (Author) / Storey, Bryan C. (Author) / Wall, Diana H. (Author) / Turk, Roman (Author) / Ruprecht, Ulrike (Author) / New College of Interdisciplinary Arts and Sciences (Contributor)
Created2012-09-19
128938-Thumbnail Image.png
Description

This survey of 206 forensic psychologists tested the “filtering” effects of preexisting expert attitudes in adversarial proceedings. Results confirmed the hypothesis that evaluator attitudes toward capital punishment influence willingness to accept capital case referrals from particular adversarial parties. Stronger death penalty opposition was associated with higher willingness to conduct evaluations

This survey of 206 forensic psychologists tested the “filtering” effects of preexisting expert attitudes in adversarial proceedings. Results confirmed the hypothesis that evaluator attitudes toward capital punishment influence willingness to accept capital case referrals from particular adversarial parties. Stronger death penalty opposition was associated with higher willingness to conduct evaluations for the defense and higher likelihood of rejecting referrals from all sources. Conversely, stronger support was associated with higher willingness to be involved in capital cases generally, regardless of referral source. The findings raise the specter of skewed evaluator involvement in capital evaluations, where evaluators willing to do capital casework may have stronger capital punishment support than evaluators who opt out, and evaluators with strong opposition may work selectively for the defense. The results may provide a partial explanation for the “allegiance effect” in adversarial legal settings such that preexisting attitudes may contribute to partisan participation through a self-selection process.

Created2016-04-28
128958-Thumbnail Image.png
Description

Background: Immunosignaturing is a new peptide microarray based technology for profiling of humoral immune responses. Despite new challenges, immunosignaturing gives us the opportunity to explore new and fundamentally different research questions. In addition to classifying samples based on disease status, the complex patterns and latent factors underlying immunosignatures, which we attempt

Background: Immunosignaturing is a new peptide microarray based technology for profiling of humoral immune responses. Despite new challenges, immunosignaturing gives us the opportunity to explore new and fundamentally different research questions. In addition to classifying samples based on disease status, the complex patterns and latent factors underlying immunosignatures, which we attempt to model, may have a diverse range of applications.

Methods: We investigate the utility of a number of statistical methods to determine model performance and address challenges inherent in analyzing immunosignatures. Some of these methods include exploratory and confirmatory factor analyses, classical significance testing, structural equation and mixture modeling.

Results: We demonstrate an ability to classify samples based on disease status and show that immunosignaturing is a very promising technology for screening and presymptomatic screening of disease. In addition, we are able to model complex patterns and latent factors underlying immunosignatures. These latent factors may serve as biomarkers for disease and may play a key role in a bioinformatic method for antibody discovery.

Conclusion: Based on this research, we lay out an analytic framework illustrating how immunosignatures may be useful as a general method for screening and presymptomatic screening of disease as well as antibody discovery.

ContributorsBrown, Justin (Author) / Stafford, Phillip (Author) / Johnston, Stephen (Author) / Dinu, Valentin (Author) / College of Health Solutions (Contributor)
Created2011-08-19
129075-Thumbnail Image.png
Description

Background: High-throughput technologies such as DNA, RNA, protein, antibody and peptide microarrays are often used to examine differences across drug treatments, diseases, transgenic animals, and others. Typically one trains a classification system by gathering large amounts of probe-level data, selecting informative features, and classifies test samples using a small number of

Background: High-throughput technologies such as DNA, RNA, protein, antibody and peptide microarrays are often used to examine differences across drug treatments, diseases, transgenic animals, and others. Typically one trains a classification system by gathering large amounts of probe-level data, selecting informative features, and classifies test samples using a small number of features. As new microarrays are invented, classification systems that worked well for other array types may not be ideal. Expression microarrays, arguably one of the most prevalent array types, have been used for years to help develop classification algorithms. Many biological assumptions are built into classifiers that were designed for these types of data. One of the more problematic is the assumption of independence, both at the probe level and again at the biological level. Probes for RNA transcripts are designed to bind single transcripts. At the biological level, many genes have dependencies across transcriptional pathways where co-regulation of transcriptional units may make many genes appear as being completely dependent. Thus, algorithms that perform well for gene expression data may not be suitable when other technologies with different binding characteristics exist. The immunosignaturing microarray is based on complex mixtures of antibodies binding to arrays of random sequence peptides. It relies on many-to-many binding of antibodies to the random sequence peptides. Each peptide can bind multiple antibodies and each antibody can bind multiple peptides. This technology has been shown to be highly reproducible and appears promising for diagnosing a variety of disease states. However, it is not clear what is the optimal classification algorithm for analyzing this new type of data.

Results: We characterized several classification algorithms to analyze immunosignaturing data. We selected several datasets that range from easy to difficult to classify, from simple monoclonal binding to complex binding patterns in asthma patients. We then classified the biological samples using 17 different classification algorithms. Using a wide variety of assessment criteria, we found ‘Naïve Bayes’ far more useful than other widely used methods due to its simplicity, robustness, speed and accuracy.

Conclusions: ‘Naïve Bayes’ algorithm appears to accommodate the complex patterns hidden within multilayered immunosignaturing microarray data due to its fundamental mathematical properties.

ContributorsKukreja, Muskan (Author) / Johnston, Stephen (Author) / Stafford, Phillip (Author) / Biodesign Institute (Contributor)
Created2012-06-21