This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 41
Filtering by

Clear all filters

129563-Thumbnail Image.png
Description

Humans are able to modulate digit forces as a function of position despite changes in digit placement that might occur from trial to trial or when changing grip type for object manipulation. Although this phenomenon is likely to rely on sensing the position of the digits relative to each other

Humans are able to modulate digit forces as a function of position despite changes in digit placement that might occur from trial to trial or when changing grip type for object manipulation. Although this phenomenon is likely to rely on sensing the position of the digits relative to each other and the object, the underlying mechanisms remain unclear. To address this question, we asked subjects (n = 30) to match perceived vertical distance between the center of pressure (CoP) of the thumb and index finger pads (dy) of the right hand (“reference” hand) using the same hand (“test” hand). The digits of reference hand were passively placed collinearly (dy = 0 mm). Subjects were then asked to exert different combinations of normal and tangential digit forces (Fn and Ftan, respectively) using the reference hand and then match the memorized dy using the test hand. The reference hand exerted Ftan of thumb and index finger in either same or opposite direction. We hypothesized that, when the tangential forces of the digits are produced in opposite directions, matching error (1) would be biased toward the directions of the tangential forces; and (2) would be greater when the remembered relative contact points are matched with negligible digit force production. For the test hand, digit forces were either negligible (0.5–1 N, 0 ± 0.25 N; Experiment 1) or the same as those exerted by the reference hand (Experiment 2).Matching error was biased towards the direction of digit tangential forces: thumb CoP was placed higher than the index finger CoP when thumb and index finger Ftan were directed upward and downward, respectively, and vice versa (p < 0.001). However, matching error was not dependent on whether the reference and test hand exerted similar or different forces. We propose that the expected sensory consequence of motor commands for tangential forces in opposite directions overrides estimation of fingertip position through haptic sensory feedback.

ContributorsShibata, Daisuke (Author) / Kappers, Astrid M. L. (Author) / Santello, Marco (Author) / College of Health Solutions (Contributor)
Created2014-08-04
129470-Thumbnail Image.png
Description

Recent studies about sensorimotor control of the human hand have focused on how dexterous manipulation is learned and generalized. Here we address this question by testing the extent to which learned manipulation can be transferred when the contralateral hand is used and/or object orientation is reversed. We asked subjects to

Recent studies about sensorimotor control of the human hand have focused on how dexterous manipulation is learned and generalized. Here we address this question by testing the extent to which learned manipulation can be transferred when the contralateral hand is used and/or object orientation is reversed. We asked subjects to use a precision grip to lift a grip device with an asymmetrical mass distribution while minimizing object roll during lifting by generating a compensatory torque. Subjects were allowed to grasp anywhere on the object’s vertical surfaces, and were therefore able to modulate both digit positions and forces. After every block of eight trials performed in one manipulation context (i.e., using the right hand and at a given object orientation), subjects had to lift the same object in the second context for one trial (transfer trial).

Context changes were made by asking subjects to switch the hand used to lift the object and/or rotate the object 180° about a vertical axis. Therefore, three transfer conditions, hand switch (HS), object rotation (OR), and both hand switch and object rotation (HS+OR), were tested and compared with hand matched control groups who did not experience context changes. We found that subjects in all transfer conditions adapted digit positions across multiple transfer trials similar to the learning of control groups, regardless of different changes of contexts. Moreover, subjects in both HS and HS+OR group also adapted digit forces similar to the control group, suggesting independent learning of the left hand. In contrast, the OR group showed significant negative transfer of the compensatory torque due to an inability to adapt digit forces. Our results indicate that internal representations of dexterous manipulation tasks may be primarily built through the hand used for learning and cannot be transferred across hands.

ContributorsFu, Qiushi (Author) / Choi, Jason (Author) / Gordon, Andrew M. (Author) / Jesunathadas, Mark (Author) / Santello, Marco (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-09-18
129336-Thumbnail Image.png
Description

Cognitive theories in visual attention and perception, categorization, and memory often critically rely on concepts of similarity among objects, and empirically require measures of “sameness” among their stimuli. For instance, a researcher may require similarity estimates among multiple exemplars of a target category in visual search, or targets and lures

Cognitive theories in visual attention and perception, categorization, and memory often critically rely on concepts of similarity among objects, and empirically require measures of “sameness” among their stimuli. For instance, a researcher may require similarity estimates among multiple exemplars of a target category in visual search, or targets and lures in recognition memory. Quantifying similarity, however, is challenging when everyday items are the desired stimulus set, particularly when researchers require several different pictures from the same category. In this article, we document a new multidimensional scaling database with similarity ratings for 240 categories, each containing color photographs of 16–17 exemplar objects. We collected similarity ratings using the spatial arrangement method. Reports include: the multidimensional scaling solutions for each category, up to five dimensions, stress and fit measures, coordinate locations for each stimulus, and two new classifications. For each picture, we categorized the item's prototypicality, indexed by its proximity to other items in the space. We also classified pairs of images along a continuum of similarity, by assessing the overall arrangement of each MDS space. These similarity ratings will be useful to any researcher that wishes to control the similarity of experimental stimuli according to an objective quantification of “sameness.”

ContributorsHout, Michael C. (Author) / Goldinger, Stephen (Author) / Brady, Kyle (Author) / Department of Psychology (Contributor)
Created2014-11-12
129361-Thumbnail Image.png
Description

Sensorimotor control theories propose that the central nervous system exploits expected sensory consequences generated by motor commands for movement planning, as well as online sensory feedback for comparison with expected sensory feedback for monitoring and correcting, if needed, ongoing motor output. In our study, we tested this theoretical framework by

Sensorimotor control theories propose that the central nervous system exploits expected sensory consequences generated by motor commands for movement planning, as well as online sensory feedback for comparison with expected sensory feedback for monitoring and correcting, if needed, ongoing motor output. In our study, we tested this theoretical framework by quantifying the functional role of expected vs. actual proprioceptive feedback for planning and regulation of gait in humans. We addressed this question by using a novel methodological approach to deliver fast perturbations of the walking surface stiffness, in conjunction with a virtual reality system that provided visual feedback of upcoming changes of surface stiffness. In the “predictable” experimental condition, we asked subjects to learn associating visual feedback of changes in floor stiffness (sand patch) during locomotion to quantify kinematic and kinetic changes in gait prior to and during the gait cycle. In the “unpredictable” experimental condition, we perturbed floor stiffness at unpredictable instances during the gait to characterize the gait-phase dependent strategies in recovering the locomotor cycle. For the “unpredictable” conditions, visual feedback of changes in floor stiffness was absent or inconsistent with tactile and proprioceptive feedback. The investigation of these perturbation-induced effects on contralateral leg kinematics revealed that visual feedback of upcoming changes in floor stiffness allows for both early (preparatory) and late (post-perturbation) changes in leg kinematics. However, when proprioceptive feedback is not available, the early responses in leg kinematics do not occur while the late responses are preserved although in a, slightly attenuated form. The methods proposed in this study and the preliminary results of the kinematic response of the contralateral leg open new directions for the investigation of the relative role of visual, tactile, and proprioceptive feedback on gait control, with potential implications for designing novel robot-assisted gait rehabilitation approaches.

ContributorsFrost, Ryan (Author) / Skidmore, Jeffrey (Author) / Santello, Marco (Author) / Artemiadis, Panagiotis (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-02-09
129220-Thumbnail Image.png
Description

While expert groups often make recommendations on a range of non-controversial as well as controversial issues, little is known about how the level of expert consensus-the level of expert agreement-influences perceptions of the recommendations. This research illustrates that for non-controversial issues expert groups that exhibit high levels of agreement are

While expert groups often make recommendations on a range of non-controversial as well as controversial issues, little is known about how the level of expert consensus-the level of expert agreement-influences perceptions of the recommendations. This research illustrates that for non-controversial issues expert groups that exhibit high levels of agreement are more persuasive than expert groups that exhibit low levels of agreement. This effect is mediated by the perceived entitativity-the perceived cohesiveness or unification of the group-of the expert group. But for controversial issues, this effect is moderated by the perceivers' implicit assumptions about the group composition. When perceivers are provided no information about a group supporting the Affordable Care Act-a highly controversial piece of U.S. legislation that is divided by political party throughout the country-higher levels of agreement are less persuasive than lower levels of agreement because participants assume there were more democrats and fewer republicans in the group. But when explicitly told that the group was half republicans and half democrats, higher levels of agreement are more persuasive.

ContributorsVotruba, Ashley (Author) / Kwan, Sau (Author) / Department of Psychology (Contributor)
Created2015-03-26
129413-Thumbnail Image.png
Description

The intact nervous system has an exquisite ability to modulate the activity of multiple muscles acting at one or more joints to produce an enormous range of actions. Seemingly simple tasks, such as reaching for an object or walking, in fact rely on very complex spatial and temporal patterns of

The intact nervous system has an exquisite ability to modulate the activity of multiple muscles acting at one or more joints to produce an enormous range of actions. Seemingly simple tasks, such as reaching for an object or walking, in fact rely on very complex spatial and temporal patterns of muscle activations. Neurological disorders such as stroke and focal dystonia affect the ability to coordinate multi-joint movements. This article reviews the state of the art of research of muscle synergies in the intact and damaged nervous system, their implications for recovery and rehabilitation, and proposes avenues for research aimed at restoring the nervous system’s ability to control movement.

ContributorsSantello, Marco (Author) / Lang, Catherine E. (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-01-06
128870-Thumbnail Image.png
Description

Studies have shown that internal representations of manipulations of objects with asymmetric mass distributions that are generated within a specific orientation are not generalizable to novel orientations, i.e., subjects fail to prevent object roll on their first grasp-lift attempt of the object following 180° object rotation. This suggests that representations

Studies have shown that internal representations of manipulations of objects with asymmetric mass distributions that are generated within a specific orientation are not generalizable to novel orientations, i.e., subjects fail to prevent object roll on their first grasp-lift attempt of the object following 180° object rotation. This suggests that representations of these manipulations are specific to the reference frame in which they are formed. However, it is unknown whether that reference frame is specific to the hand, the body, or both, because rotating the object 180° modifies the relation between object and body as well as object and hand. An alternative, untested explanation for the above failure to generalize learned manipulations is that any rotation will disrupt grasp performance, regardless if the reference frame in which the manipulation was learned is maintained or modified. We examined the effect of rotations that (1) maintain and (2) modify relations between object and body, and object and hand, on the generalizability of learned two-digit manipulation of an object with an asymmetric mass distribution. Following rotations that maintained the relation between object and body and object and hand (e.g., rotating the object and subject 180°), subjects continued to use appropriate digit placement and load force distributions, thus generating sufficient compensatory moments to minimize object roll. In contrast, following rotations that modified the relation between (1) object and hand (e.g. rotating the hand around to the opposite object side), (2) object and body (e.g. rotating subject and hand 180°), or (3) both (e.g. rotating the subject 180°), subjects used the same, yet inappropriate digit placement and load force distribution, as those used prior to the rotation. Consequently, the compensatory moments were insufficient to prevent large object rolls. These findings suggest that representations of learned manipulation of objects with asymmetric mass distributions are specific to the body- and hand-reference frames in which they were learned.

ContributorsMarneweck, Michelle (Author) / Knelange, Elisabeth (Author) / Lee-Miller, Trevor (Author) / Santello, Marco (Author) / Gordon, Andrew M. (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-09-16
128941-Thumbnail Image.png
Description

Background: Physical activity (PA) interventions typically include components or doses that are static across participants. Adaptive interventions are dynamic; components or doses change in response to short-term variations in participant's performance. Emerging theory and technologies make adaptive goal setting and feedback interventions feasible.

Objective: To test an adaptive intervention for PA based on

Background: Physical activity (PA) interventions typically include components or doses that are static across participants. Adaptive interventions are dynamic; components or doses change in response to short-term variations in participant's performance. Emerging theory and technologies make adaptive goal setting and feedback interventions feasible.

Objective: To test an adaptive intervention for PA based on Operant and Behavior Economic principles and a percentile-based algorithm. The adaptive intervention was hypothesized to result in greater increases in steps per day than the static intervention.

Methods: Participants (N = 20) were randomized to one of two 6-month treatments: 1) static intervention (SI) or 2) adaptive intervention (AI). Inactive overweight adults (85% women, M = 36.9±9.2 years, 35% non-white) in both groups received a pedometer, email and text message communication, brief health information, and biweekly motivational prompts. The AI group received daily step goals that adjusted up and down based on the percentile-rank algorithm and micro-incentives for goal attainment. This algorithm adjusted goals based on a moving window; an approach that responded to each individual's performance and ensured goals were always challenging but within participants' abilities. The SI group received a static 10,000 steps/day goal with incentives linked to uploading the pedometer's data.

Results: A random-effects repeated-measures model accounted for 180 repeated measures and autocorrelation. After adjusting for covariates, the treatment phase showed greater steps/day relative to the baseline phase (p<.001) and a group by study phase interaction was observed (p = .017). The SI group increased by 1,598 steps/day on average between baseline and treatment while the AI group increased by 2,728 steps/day on average between baseline and treatment; a significant between-group difference of 1,130 steps/day (Cohen's d = .74).

Conclusions: The adaptive intervention outperformed the static intervention for increasing PA. The adaptive goal and feedback algorithm is a “behavior change technology” that could be incorporated into mHealth technologies and scaled to reach large populations.

ContributorsAdams, Marc (Author) / Sallis, James F. (Author) / Norman, Gregory J. (Author) / Hovell, Melbourne F. (Author) / Hekler, Eric (Author) / Perata, Elyse (Author) / College of Health Solutions (Contributor)
Created2013-12-09
128957-Thumbnail Image.png
Description

Background: An evidence-based steps/day translation of U.S. federal guidelines for youth to engage in ≥60 minutes/day of moderate-to-vigorous physical activity (MVPA) would help health researchers, practitioners, and lay professionals charged with increasing youth’s physical activity (PA). The purpose of this study was to determine the number of free-living steps/day (both raw and

Background: An evidence-based steps/day translation of U.S. federal guidelines for youth to engage in ≥60 minutes/day of moderate-to-vigorous physical activity (MVPA) would help health researchers, practitioners, and lay professionals charged with increasing youth’s physical activity (PA). The purpose of this study was to determine the number of free-living steps/day (both raw and adjusted to a pedometer scale) that correctly classified children (6–11 years) and adolescents (12–17 years) as meeting the 60-minute MVPA guideline using the 2005–2006 National Health and Nutrition Examination Survey (NHANES) accelerometer data, and to evaluate the 12,000 steps/day recommendation recently adopted by the President’s Challenge Physical Activity and Fitness Awards Program.

Methods: Analyses were conducted among children (n = 915) and adolescents (n = 1,302) in 2011 and 2012. Receiver Operating Characteristic (ROC) curve plots and classification statistics revealed candidate steps/day cut points that discriminated meeting/not meeting the MVPA threshold by age group, gender and different accelerometer activity cut points. The Evenson and two Freedson age-specific (3 and 4 METs) cut points were used to define minimum MVPA, and optimal steps/day were examined for raw steps and adjusted to a pedometer-scale to facilitate translation to lay populations.

Results: For boys and girls (6–11 years) with ≥ 60 minutes/day of MVPA, a range of 11,500–13,500 uncensored steps/day for children was the optimal range that balanced classification errors. For adolescent boys and girls (12–17) with ≥60 minutes/day of MVPA, 11,500–14,000 uncensored steps/day was optimal. Translation to a pedometer-scaling reduced these minimum values by 2,500 step/day to 9,000 steps/day. Area under the curve was ≥84% in all analyses.

Conclusions: No single study has definitively identified a precise and unyielding steps/day value for youth. Considering the other evidence to date, we propose a reasonable ‘rule of thumb’ value of ≥ 11,500 accelerometer-determined steps/day for both children and adolescents (and both genders), accepting that more is better. For practical applications, 9,000 steps/day appears to be a more pedometer-friendly value.

ContributorsAdams, Marc (Author) / Johnson, William D. (Author) / Tudor-Locke, Catrine (Author) / College of Health Solutions (Contributor)
Created2013-04-21
128963-Thumbnail Image.png
Description

Background: Medical and public health scientists are using evolution to devise new strategies to solve major health problems. But based on a 2003 survey, medical curricula may not adequately prepare physicians to evaluate and extend these advances. This study assessed the change in coverage of evolution in North American medical schools

Background: Medical and public health scientists are using evolution to devise new strategies to solve major health problems. But based on a 2003 survey, medical curricula may not adequately prepare physicians to evaluate and extend these advances. This study assessed the change in coverage of evolution in North American medical schools since 2003 and identified opportunities for enriching medical education.

Methods: In 2013, curriculum deans for all North American medical schools were invited to rate curricular coverage and perceived importance of 12 core principles, the extent of anticipated controversy from adding evolution, and the usefulness of 13 teaching resources. Differences between schools were assessed by Pearson’s chi-square test, Student’s t-test, and Spearman’s correlation. Open-ended questions sought insight into perceived barriers and benefits.

Results: Despite repeated follow-up, 60 schools (39%) responded to the survey. There was no evidence of sample bias. The three evolutionary principles rated most important were antibiotic resistance, environmental mismatch, and somatic selection in cancer. While importance and coverage of principles were correlated (r = 0.76, P < 0.01), coverage (at least moderate) lagged behind importance (at least moderate) by an average of 21% (SD = 6%). Compared to 2003, a range of evolutionary principles were covered by 4 to 74% more schools. Nearly half (48%) of responders anticipated igniting controversy at their medical school if they added evolution to their curriculum. The teaching resources ranked most useful were model test questions and answers, case studies, and model curricula for existing courses/rotations. Limited resources (faculty expertise) were cited as the major barrier to adding more evolution, but benefits included a deeper understanding and improved patient care.

Conclusion: North American medical schools have increased the evolution content in their curricula over the past decade. However, coverage is not commensurate with importance. At a few medical schools, anticipated controversy impedes teaching more evolution. Efforts to improve evolution education in medical schools should be directed toward boosting faculty expertise and crafting resources that can be easily integrated into existing curricula.

ContributorsHidaka, Brandon H. (Author) / Asghar, Anila (Author) / Aktipis, C. Athena (Author) / Nesse, Randolph (Author) / Wolpaw, Terry M. (Author) / Skursky, Nicole K. (Author) / Bennett, Katelyn J. (Author) / Beyrouty, Matthew W. (Author) / Schwartz, Mark D. (Author) / Department of Psychology (Contributor)
Created2015-03-08