This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 24
Filtering by

Clear all filters

129588-Thumbnail Image.png
Description

A globally integrated carbon observation and analysis system is needed to improve the fundamental understanding of the global carbon cycle, to improve our ability to project future changes, and to verify the effectiveness of policies aiming to reduce greenhouse gas emissions and increase carbon sequestration. Building an integrated carbon observation

A globally integrated carbon observation and analysis system is needed to improve the fundamental understanding of the global carbon cycle, to improve our ability to project future changes, and to verify the effectiveness of policies aiming to reduce greenhouse gas emissions and increase carbon sequestration. Building an integrated carbon observation system requires transformational advances from the existing sparse, exploratory framework towards a dense, robust, and sustained system in all components: anthropogenic emissions, the atmosphere, the ocean, and the terrestrial biosphere. The paper is addressed to scientists, policymakers, and funding agencies who need to have a global picture of the current state of the (diverse) carbon observations.

We identify the current state of carbon observations, and the needs and notional requirements for a global integrated carbon observation system that can be built in the next decade. A key conclusion is the substantial expansion of the ground-based observation networks required to reach the high spatial resolution for CO2 and CH4 fluxes, and for carbon stocks for addressing policy-relevant objectives, and attributing flux changes to underlying processes in each region. In order to establish flux and stock diagnostics over areas such as the southern oceans, tropical forests, and the Arctic, in situ observations will have to be complemented with remote-sensing measurements. Remote sensing offers the advantage of dense spatial coverage and frequent revisit. A key challenge is to bring remote-sensing measurements to a level of long-term consistency and accuracy so that they can be efficiently combined in models to reduce uncertainties, in synergy with ground-based data.

Bringing tight observational constraints on fossil fuel and land use change emissions will be the biggest challenge for deployment of a policy-relevant integrated carbon observation system. This will require in situ and remotely sensed data at much higher resolution and density than currently achieved for natural fluxes, although over a small land area (cities, industrial sites, power plants), as well as the inclusion of fossil fuel CO2 proxy measurements such as radiocarbon in CO2 and carbon-fuel combustion tracers. Additionally, a policy-relevant carbon monitoring system should also provide mechanisms for reconciling regional top-down (atmosphere-based) and bottom-up (surface-based) flux estimates across the range of spatial and temporal scales relevant to mitigation policies. In addition, uncertainties for each observation data-stream should be assessed. The success of the system will rely on long-term commitments to monitoring, on improved international collaboration to fill gaps in the current observations, on sustained efforts to improve access to the different data streams and make databases interoperable, and on the calibration of each component of the system to agreed-upon international scales.

ContributorsCiais, P. (Author) / Dolman, A. J. (Author) / Bombelli, A. (Author) / Duren, R. (Author) / Peregon, A. (Author) / Rayner, P. J. (Author) / Miller, C. (Author) / Gobron, N. (Author) / Kinderman, G. (Author) / Marland, G. (Author) / Gruber, N. (Author) / Chevallier, F. (Author) / Andres, R. J. (Author) / Balsamo, G. (Author) / Bopp, L. (Author) / Breon, F. -M. (Author) / Broquet, G. (Author) / Dargaville, R. (Author) / Battin, T. J. (Author) / Borges, A. (Author) / Bovensmann, H. (Author) / Buchwitz, M. (Author) / Butler, J. (Author) / Canadell, J. G. (Author) / Cook, R. B. (Author) / DeFries, R. (Author) / Engelen, R. (Author) / Gurney, Kevin (Author) / Heinze, C. (Author) / Heimann, M. (Author) / Held, A. (Author) / Henry, M. (Author) / Law, B. (Author) / Luyssaert, S. (Author) / Miller, J. (Author) / Moriyama, T. (Author) / Moulin, C. (Author) / Myneni, R. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-11-30
129477-Thumbnail Image.png
Description

Evolutionary dynamical models for cyclic competitions of three species (e.g., rock, paper, and scissors, or RPS) provide a paradigm, at the microscopic level of individual interactions, to address many issues in coexistence and biodiversity. Real ecosystems often involve competitions among more than three species. By extending the RPS game model

Evolutionary dynamical models for cyclic competitions of three species (e.g., rock, paper, and scissors, or RPS) provide a paradigm, at the microscopic level of individual interactions, to address many issues in coexistence and biodiversity. Real ecosystems often involve competitions among more than three species. By extending the RPS game model to five (rock-paper-scissors-lizard-Spock, or RPSLS) mobile species, we uncover a fundamental type of mesoscopic interactions among subgroups of species. In particular, competitions at the microscopic level lead to the emergence of various local groups in different regions of the space, each involving three species. It is the interactions among the groups that fundamentally determine how many species can coexist. In fact, as the mobility is increased from zero, two transitions can occur: one from a five- to a three-species coexistence state and another from the latter to a uniform, single-species state. We develop a mean-field theory to show that, in order to understand the first transition, group interactions at the mesoscopic scale must be taken into account. Our findings suggest, more broadly, the importance of mesoscopic interactions in coexistence of great many species.

ContributorsCheng, Hongyan (Author) / Yao, Nan (Author) / Huang, Zi-Gang (Author) / Park, Junpyo (Author) / Do, Younghae (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-12-15
129478-Thumbnail Image.png
Description

Errors in the specification or utilization of fossil fuel CO2 emissions within carbon budget or atmospheric CO2 inverse studies can alias the estimation of biospheric and oceanic carbon exchange. A key component in the simulation of CO2 concentrations arising from fossil fuel emissions is the spatial distribution of the emission

Errors in the specification or utilization of fossil fuel CO2 emissions within carbon budget or atmospheric CO2 inverse studies can alias the estimation of biospheric and oceanic carbon exchange. A key component in the simulation of CO2 concentrations arising from fossil fuel emissions is the spatial distribution of the emission near coastlines. Regridding of fossil fuel CO2 emissions (FFCO2) from fine to coarse grids to enable atmospheric transport simulations can give rise to mismatches between the emissions and simulated atmospheric dynamics which differ over land or water. For example, emissions originally emanating from the land are emitted from a grid cell for which the vertical mixing reflects the roughness and/or surface energy exchange of an ocean surface. We test this potential "dynamical inconsistency" by examining simulated global atmospheric CO2 concentration driven by two different approaches to regridding fossil fuel CO2 emissions. The two approaches are as follows: (1) a commonly used method that allocates emissions to grid cells with no attempt to ensure dynamical consistency with atmospheric transport and (2) an improved method that reallocates emissions to grid cells to ensure dynamically consistent results. Results show large spatial and temporal differences in the simulated CO2 concentration when comparing these two approaches. The emissions difference ranges from −30.3 TgC grid cell-1 yr-1 (−3.39 kgC m-2 yr-1) to +30.0 TgC grid cell-1 yr-1 (+2.6 kgC m-2 yr-1) along coastal margins. Maximum simulated annual mean CO2 concentration differences at the surface exceed ±6 ppm at various locations and times. Examination of the current CO2 monitoring locations during the local afternoon, consistent with inversion modeling system sampling and measurement protocols, finds maximum hourly differences at 38 stations exceed ±0.10 ppm with individual station differences exceeding −32 ppm. The differences implied by not accounting for this dynamical consistency problem are largest at monitoring sites proximal to large coastal urban areas and point sources. These results suggest that studies comparing simulated to observed atmospheric CO2 concentration, such as atmospheric CO2 inversions, must take measures to correct for this potential problem and ensure flux and dynamical consistency.

ContributorsZhang, X. (Author) / Gurney, Kevin (Author) / Rayner, P. (Author) / Liu, Y. (Author) / Asefi-Najafabady, Salvi (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-11-30
129275-Thumbnail Image.png
Description

We investigate high-dimensional nonlinear dynamical systems exhibiting multiple resonances under adiabatic parameter variations. Our motivations come from experimental considerations where time-dependent sweeping of parameters is a practical approach to probing and characterizing the bifurcations of the system. The question is whether bifurcations so detected are faithful representations of the bifurcations

We investigate high-dimensional nonlinear dynamical systems exhibiting multiple resonances under adiabatic parameter variations. Our motivations come from experimental considerations where time-dependent sweeping of parameters is a practical approach to probing and characterizing the bifurcations of the system. The question is whether bifurcations so detected are faithful representations of the bifurcations intrinsic to the original stationary system. Utilizing a harmonically forced, closed fluid flow system that possesses multiple resonances and solving the Navier-Stokes equation under proper boundary conditions, we uncover the phenomenon of the early effect. Specifically, as a control parameter, e.g., the driving frequency, is adiabatically increased from an initial value, resonances emerge at frequency values that are lower than those in the corresponding stationary system. The phenomenon is established by numerical characterization of physical quantities through the resonances, which include the kinetic energy and the vorticity field, and a heuristic analysis based on the concept of instantaneous frequency. A simple formula is obtained which relates the resonance points in the time-dependent and time-independent systems. Our findings suggest that, in general, any true bifurcation of a nonlinear dynamical system can be unequivocally uncovered through adiabatic parameter sweeping, in spite of a shift in the bifurcation point, which is of value to experimental studies of nonlinear dynamical systems.

ContributorsPark, Youngyong (Author) / Do, Younghae (Author) / Altmeyer, Sebastian (Author) / Lai, Ying-Cheng (Author) / Lee, GyuWon (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-02-09
Description

High-resolution, global quantification of fossil fuel CO[subscript 2] emissions is emerging as a critical need in carbon cycle science and climate policy. We build upon a previously developed fossil fuel data assimilation system (FFDAS) for estimating global high-resolution fossil fuel CO[subscript 2] emissions. We have improved the underlying observationally based

High-resolution, global quantification of fossil fuel CO[subscript 2] emissions is emerging as a critical need in carbon cycle science and climate policy. We build upon a previously developed fossil fuel data assimilation system (FFDAS) for estimating global high-resolution fossil fuel CO[subscript 2] emissions. We have improved the underlying observationally based data sources, expanded the approach through treatment of separate emitting sectors including a new pointwise database of global power plants, and extended the results to cover a 1997 to 2010 time series at a spatial resolution of 0.1°. Long-term trend analysis of the resulting global emissions shows subnational spatial structure in large active economies such as the United States, China, and India. These three countries, in particular, show different long-term trends and exploration of the trends in nighttime lights, and population reveal a decoupling of population and emissions at the subnational level. Analysis of shorter-term variations reveals the impact of the 2008–2009 global financial crisis with widespread negative emission anomalies across the U.S. and Europe. We have used a center of mass (CM) calculation as a compact metric to express the time evolution of spatial patterns in fossil fuel CO[subscript 2] emissions. The global emission CM has moved toward the east and somewhat south between 1997 and 2010, driven by the increase in emissions in China and South Asia over this time period. Analysis at the level of individual countries reveals per capita CO[subscript 2] emission migration in both Russia and India. The per capita emission CM holds potential as a way to succinctly analyze subnational shifts in carbon intensity over time. Uncertainties are generally lower than the previous version of FFDAS due mainly to an improved nightlight data set.

ContributorsAsefi-Najafabady, Salvi (Author) / Rayner, P. J. (Author) / Gurney, Kevin (Author) / McRobert, A. (Author) / Song, Y. (Author) / Coltin, K. (Author) / Huang, J. (Author) / Elvidge, C. (Author) / Baugh, K. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-09-16
Description

It is known that in classical fluids turbulence typically occurs at high Reynolds numbers. But can turbulence occur at low Reynolds numbers? Here we investigate the transition to turbulence in the classic Taylor-Couette system in which the rotating fluids are manufactured ferrofluids with magnetized nanoparticles embedded in liquid carriers. We

It is known that in classical fluids turbulence typically occurs at high Reynolds numbers. But can turbulence occur at low Reynolds numbers? Here we investigate the transition to turbulence in the classic Taylor-Couette system in which the rotating fluids are manufactured ferrofluids with magnetized nanoparticles embedded in liquid carriers. We find that, in the presence of a magnetic field transverse to the symmetry axis of the system, turbulence can occur at Reynolds numbers that are at least one order of magnitude smaller than those in conventional fluids. This is established by extensive computational ferrohydrodynamics through a detailed investigation of transitions in the flow structure, and characterization of behaviors of physical quantities such as the energy, the wave number, and the angular momentum through the bifurcations. A finding is that, as the magnetic field is increased, onset of turbulence can be determined accurately and reliably. Our results imply that experimental investigation of turbulence may be feasible by using ferrofluids. Our study of transition to and evolution of turbulence in the Taylor-Couette ferrofluidic flow system provides insights into the challenging problem of turbulence control.

ContributorsAltmeyer, Sebastian (Author) / Do, Younghae (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-06-12
128299-Thumbnail Image.png
Description

Atmospheric radiocarbon (14C) represents an important observational constraint on emissions of fossil-fuel derived carbon into the atmosphere due to the absence of 14C in fossil fuel reservoirs. The high sensitivity and precision that accelerator mass spectrometry (AMS) affords in atmospheric 14C analysis has greatly increased the potential for using such

Atmospheric radiocarbon (14C) represents an important observational constraint on emissions of fossil-fuel derived carbon into the atmosphere due to the absence of 14C in fossil fuel reservoirs. The high sensitivity and precision that accelerator mass spectrometry (AMS) affords in atmospheric 14C analysis has greatly increased the potential for using such measurements to evaluate bottom-up emissions inventories of fossil fuel CO2(CO2ff), as well as those for other co-emitted species. Here we use observations of 14CO2 and a series of primary hydrocarbons and combustion tracers from discrete air samples collected between June 2009 and September 2010 at the National Oceanic and Atmospheric Administration Boulder Atmospheric Observatory (BAO; Lat: 40.050° N, Lon: 105.004° W) to derive emission ratios of each species with respect to CO2ff. The BAO tower is situated at the boundary of the Denver metropolitan area to the south and a large industrial and agricultural region to the north and east, making it an ideal location to study the contrasting mix of emissions from the activities in each region. The species considered in this analysis are carbon monoxide (CO), methane (CH4), acetylene (C2H2), benzene (C6H6), and C3–C5 alkanes. We estimate emissions for a subset of these species by using the Vulcan high resolution CO2ff emission data product as a reference. We find that CO is overestimated in the 2008 National Emissions Inventory (NEI08) by a factor of ~2. A close evaluation of the inventory suggests that the ratio of CO emitted per unit fuel burned from on-road gasoline vehicles is likely over-estimated by a factor of 2.5. Using a wind-directional analysis of the data, we find enhanced concentrations of CH4, relative to CO2ff, in air influenced by emissions to the north and east of the BAO tower when compared to air influenced by emissions in the Denver metro region to the south. Along with enhanced CH4, the strongest enhancements of the C3–C5 alkanes are also found in the north and east wind sector, suggesting that both the alkane and CH4 enhancements are sourced from oil and gas fields located to the northeast, though it was not possible to rule out the contribution of non oil and gas CH4 sources.

ContributorsLaFranchi, B. W. (Author) / Petron, G. (Author) / Miller, J. B. (Author) / Lehman, S. J. (Author) / Andrews, A. E. (Author) / Dlugokencky, E. J. (Author) / Hall, B. (Author) / Miller, B. R. (Author) / Montzka, S. A. (Author) / Neff, W. (Author) / Novelli, P. C. (Author) / Sweeney, C. (Author) / Turnbull, J. C. (Author) / Wolfe, D. E. (Author) / Tans, P. P. (Author) / Gurney, Kevin (Author) / Guilderson, T. P. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-11-15
128318-Thumbnail Image.png
Description

Urban environments are the primary contributors to global anthropogenic carbon emissions. Because much of the growth in CO2 emissions will originate from cities, there is a need to develop, assess, and improve measurement and modeling strategies for quantifying and monitoring greenhouse gas emissions from large urban centers. In this study

Urban environments are the primary contributors to global anthropogenic carbon emissions. Because much of the growth in CO2 emissions will originate from cities, there is a need to develop, assess, and improve measurement and modeling strategies for quantifying and monitoring greenhouse gas emissions from large urban centers. In this study the uncertainties in an aircraft-based mass balance approach for quantifying carbon dioxide and methane emissions from an urban environment, focusing on Indianapolis, IN, USA, are described. The relatively level terrain of Indianapolis facilitated the application of mean wind fields in the mass balance approach. We investigate the uncertainties in our aircraft-based mass balance approach by (1) assessing the sensitivity of the measured flux to important measurement and analysis parameters including wind speed, background CO2 and CH4, boundary layer depth, and interpolation technique, and (2) determining the flux at two or more downwind distances from a point or area source (with relatively large source strengths such as solid waste facilities and a power generating station) in rapid succession, assuming that the emission flux is constant. When we quantify the precision in the approach by comparing the estimated emissions derived from measurements at two or more downwind distances from an area or point source, we find that the minimum and maximum repeatability were 12 and 52%, with an average of 31%. We suggest that improvements in the experimental design can be achieved by careful determination of the background concentration, monitoring the evolution of the boundary layer through the measurement period, and increasing the number of downwind horizontal transect measurements at multiple altitudes within the boundary layer.

ContributorsCambaliza, M. O. L. (Author) / Shepson, P. B. (Author) / Caulton, D. R. (Author) / Stirm, B. (Author) / Samarov, D. (Author) / Gurney, Kevin (Author) / Turnbull, J. (Author) / Davis, K. J. (Author) / Possolo, A. (Author) / Karion, A. (Author) / Sweeney, C. (Author) / Moser, B. (Author) / Hendricks, A. (Author) / Lauvaux, T. (Author) / Mays, K. (Author) / Whetstone, J. (Author) / Huang, J. (Author) / Razlivanov, Igor (Author) / Niles, N. L. (Author) / Richardson, S. J. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-09-02
128138-Thumbnail Image.png
Description

Evolutionary games of cyclic competitions have been extensively studied to gain insights into one of the most fundamental phenomena in nature: biodiversity that seems to be excluded by the principle of natural selection. The Rock-Paper-Scissors (RPS) game of three species and its extensions [e.g., the Rock-Paper-Scissors-Lizard-Spock (RPSLS) game] are paradigmatic

Evolutionary games of cyclic competitions have been extensively studied to gain insights into one of the most fundamental phenomena in nature: biodiversity that seems to be excluded by the principle of natural selection. The Rock-Paper-Scissors (RPS) game of three species and its extensions [e.g., the Rock-Paper-Scissors-Lizard-Spock (RPSLS) game] are paradigmatic models in this field. In all previous studies, the intrinsic symmetry associated with cyclic competitions imposes a limitation on the resulting coexistence states, leading to only selective types of such states. We investigate the effect of nonuniform intraspecific competitions on coexistence and find that a wider spectrum of coexistence states can emerge and persist. This surprising finding is substantiated using three classes of cyclic game models through stability analysis, Monte Carlo simulations and continuous spatiotemporal dynamical evolution from partial differential equations. Our finding indicates that intraspecific competitions or alternative symmetry-breaking mechanisms can promote biodiversity to a broader extent than previously thought.

ContributorsPark, Junpyo (Author) / Do, Younghae (Author) / Jang, Bongsoo (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2017-08-07
128168-Thumbnail Image.png
Description

Large urban emissions of greenhouse gases result in large atmospheric enhancements relative to background that are easily measured. Using CO2 mole fractions and Δ14C and δ13C values of CO2 in the Los Angeles megacity observed in inland Pasadena (2006–2013) and coastal Palos Verdes peninsula (autumn 2009–2013), we have determined time

Large urban emissions of greenhouse gases result in large atmospheric enhancements relative to background that are easily measured. Using CO2 mole fractions and Δ14C and δ13C values of CO2 in the Los Angeles megacity observed in inland Pasadena (2006–2013) and coastal Palos Verdes peninsula (autumn 2009–2013), we have determined time series for CO2 contributions from fossil fuel combustion (Cff) for both sites and broken those down into contributions from petroleum and/or gasoline and natural gas burning for Pasadena. We find a 10 % reduction in Pasadena Cff during the Great Recession of 2008–2010, which is consistent with the bottom-up inventory determined by the California Air Resources Board. The isotopic variations and total atmospheric CO2 from our observations are used to infer seasonality of natural gas and petroleum combustion. The trend of CO2 contributions to the atmosphere from natural gas combustion is out of phase with the seasonal cycle of total natural gas combustion seasonal patterns in bottom-up inventories but is consistent with the seasonality of natural gas usage by the area's electricity generating power plants. For petroleum, the inferred seasonality of CO2 contributions from burning petroleum is delayed by several months relative to usage indicated by statewide gasoline taxes. Using the high-resolution Hestia-LA data product to compare Cff from parts of the basin sampled by winds at different times of year, we find that variations in observed fossil fuel CO2 reflect seasonal variations in wind direction. The seasonality of the local CO2 excess from fossil fuel combustion along the coast, on Palos Verdes peninsula, is higher in autumn and winter than spring and summer, almost completely out of phase with that from Pasadena, also because of the annual variations of winds in the region. Variations in fossil fuel CO2 signals are consistent with sampling the bottom-up Hestia-LA fossil CO2 emissions product for sub-city source regions in the LA megacity domain when wind directions are considered.

ContributorsNewman, Sally (Author) / Xu, Xiaomei (Author) / Gurney, Kevin (Author) / Hsu, Ying Kuang (Author) / Li, King Fai (Author) / Jiang, Xun (Author) / Keeling, Ralph (Author) / Feng, Sha (Author) / O'Keeffe, Darragh (Author) / Patarasuk, Risa (Author) / Wong, Kam Weng (Author) / Rao, Preeti (Author) / Fischer, Marc L. (Author) / Yung, Yuk L. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-03-22