This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 21
Filtering by

Clear all filters

Description

Background: Meiotic recombination has traditionally been explained based on the structural requirement to stabilize homologous chromosome pairs to ensure their proper meiotic segregation. Competing hypotheses seek to explain the emerging findings of significant heterogeneity in recombination rates within and between genomes, but intraspecific comparisons of genome-wide recombination patterns are rare.

Background: Meiotic recombination has traditionally been explained based on the structural requirement to stabilize homologous chromosome pairs to ensure their proper meiotic segregation. Competing hypotheses seek to explain the emerging findings of significant heterogeneity in recombination rates within and between genomes, but intraspecific comparisons of genome-wide recombination patterns are rare. The honey bee (Apis mellifera) exhibits the highest rate of genomic recombination among multicellular animals with about five cross-over events per chromatid.

Results: Here, we present a comparative analysis of recombination rates across eight genetic linkage maps of the honey bee genome to investigate which genomic sequence features are correlated with recombination rate and with its variation across the eight data sets, ranging in average marker spacing ranging from 1 Mbp to 120 kbp. Overall, we found that GC content explained best the variation in local recombination rate along chromosomes at the analyzed 100 kbp scale. In contrast, variation among the different maps was correlated to the abundance of microsatellites and several specific tri- and tetra-nucleotides.

Conclusions: The combined evidence from eight medium-scale recombination maps of the honey bee genome suggests that recombination rate variation in this highly recombining genome might be due to the DNA configuration instead of distinct sequence motifs. However, more fine-scale analyses are needed. The empirical basis of eight differing genetic maps allowed for robust conclusions about the correlates of the local recombination rates and enabled the study of the relation between DNA features and variability in local recombination rates, which is particularly relevant in the honey bee genome with its exceptionally high recombination rate.

ContributorsRoss, Caitlin R. (Author) / DeFelice, Dominick S. (Author) / Hunt, Greg J. (Author) / Ihle, Kate (Author) / Amdam, Gro (Author) / Rueppell, Olav (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-02-21
129428-Thumbnail Image.png
Description

Quantifying the interactions of bacteria with external ligands is fundamental to the understanding of pathogenesis, antibiotic resistance, immune evasion, and mechanism of antimicrobial action. Due to inherent cell-to-cell heterogeneity in a microbial population, each bacterium interacts differently with its environment. This large variability is washed out in bulk assays, and

Quantifying the interactions of bacteria with external ligands is fundamental to the understanding of pathogenesis, antibiotic resistance, immune evasion, and mechanism of antimicrobial action. Due to inherent cell-to-cell heterogeneity in a microbial population, each bacterium interacts differently with its environment. This large variability is washed out in bulk assays, and there is a need of techniques that can quantify interactions of bacteria with ligands at the single bacterium level. In this work, we present a label-free and real-time plasmonic imaging technique to measure the binding kinetics of ligand interactions with single bacteria, and perform statistical analysis of the heterogeneity. Using the technique, we have studied interactions of antibodies with single Escherichia coli O157:H7 cells and demonstrated a capability of determining the binding kinetic constants of single live bacteria with ligands, and quantify heterogeneity in a microbial population.

ContributorsSyal, Karan (Author) / Wang, Wei (Author) / Shan, Xiaonan (Author) / Wang, Shaopeng (Author) / Chen, Hong-Yuan (Author) / Tao, Nongjian (Author) / Biodesign Institute (Contributor)
Created2015-01-15
128736-Thumbnail Image.png
Description

Honeybee workers are essentially sterile female helpers that make up the majority of individuals in a colony. Workers display a marked change in physiology when they transition from in-nest tasks to foraging. Recent technological advances have made it possible to unravel the metabolic modifications associated with this transition. Previous studies

Honeybee workers are essentially sterile female helpers that make up the majority of individuals in a colony. Workers display a marked change in physiology when they transition from in-nest tasks to foraging. Recent technological advances have made it possible to unravel the metabolic modifications associated with this transition. Previous studies have revealed extensive remodeling of brain, thorax, and hypopharyngeal gland biochemistry. However, data on changes in the abdomen is scarce. To narrow this gap we investigated the proteomic composition of abdominal tissue in the days typically preceding the onset of foraging in honeybee workers.

In order to get a broader representation of possible protein dynamics, we used workers of two genotypes with differences in the age at which they initiate foraging. This approach was combined with RNA interference-mediated downregulation of an insulin/insulin-like signaling component that is central to foraging behavior, the insulin receptor substrate (irs), and with measurements of glucose and lipid levels.
Our data provide new insight into the molecular underpinnings of phenotypic plasticity in the honeybee, invoke parallels with vertebrate metabolism, and support an integrated and irs-dependent association of carbohydrate and lipid metabolism with the transition from in-nest tasks to foraging.

ContributorsChan, Queenie W. T. (Author) / Mutti, Navdeep (Author) / Foster, Leonard J. (Author) / Kocher, Sarah D. (Author) / Amdam, Gro (Author) / Wolschin, Florian (Author) / College of Liberal Arts and Sciences (Contributor)
Created2011-09-28
Description

Background:
Ketogenic diets are high fat and low carbohydrate or very low carbohydrate diets, which render high production of ketones upon consumption known as nutritional ketosis (NK). Ketosis is also produced during fasting periods, which is known as fasting ketosis (FK). Recently, the combinations of NK and FK, as well as

Background:
Ketogenic diets are high fat and low carbohydrate or very low carbohydrate diets, which render high production of ketones upon consumption known as nutritional ketosis (NK). Ketosis is also produced during fasting periods, which is known as fasting ketosis (FK). Recently, the combinations of NK and FK, as well as NK alone, have been used as resources for weight loss management and treatment of epilepsy.

Methods:
A crossover study design was applied to 11 healthy individuals, who maintained moderately sedentary lifestyle, and consumed three types of diet randomly assigned over a three-week period. All participants completed the diets in a randomized and counterbalanced fashion. Each weekly diet protocol included three phases: Phase 1 - A mixed diet with ratio of fat: (carbohydrate + protein) by mass of 0.18 or the equivalence of 29% energy from fat from Day 1 to Day 5. Phase 2- A mixed or a high-fat diet with ratio of fat: (carbohydrate + protein) by mass of approximately 0.18, 1.63, or 3.80 on Day 6 or the equivalence of 29%, 79%, or 90% energy from fat, respectively. Phase 3 - A fasting diet with no calorie intake on Day 7. Caloric intake from diets on Day 1 to Day 6 was equal to each individual’s energy expenditure. On Day 7, ketone buildup from FK was measured.

Results:
A statistically significant effect of Phase 2 (Day 6) diet was found on FK of Day 7, as indicated by repeated analysis of variance (ANOVA), F(2,20) = 6.73, p < 0.0058. Using a Fisher LDS pair-wise comparison, higher significant levels of acetone buildup were found for diets with 79% fat content and 90% fat content vs. 29% fat content (with p = 0.00159**, and 0.04435**, respectively), with no significant difference between diets with 79% fat content and 90% fat content. In addition, independent of the diet, a significantly higher ketone buildup capability of subjects with higher resting energy expenditure (R[superscript 2] = 0.92), and lower body mass index (R[superscript 2] = 0.71) was observed during FK.

ContributorsPrabhakar, Amlendu (Author) / Quach, Ashley (Author) / Zhang, Haojiong (Author) / Terrera, Mirna (Author) / Jackemeyer, David (Author) / Xian, Xiaojun (Author) / Tsow, Tsing (Author) / Tao, Nongjian (Author) / Forzani, Erica (Author) / Biodesign Institute (Contributor)
Created2015-04-22
128910-Thumbnail Image.png
Description

Recent advancements in genomics provide new tools for evolutionary ecological research. The paper wasp genus Polistes is a model for social insect evolution and behavioral ecology. We developed RNA interference (RNAi)-mediated gene silencing to explore proposed connections between expression of hexameric storage proteins and worker vs. gyne (potential future foundress)

Recent advancements in genomics provide new tools for evolutionary ecological research. The paper wasp genus Polistes is a model for social insect evolution and behavioral ecology. We developed RNA interference (RNAi)-mediated gene silencing to explore proposed connections between expression of hexameric storage proteins and worker vs. gyne (potential future foundress) castes in naturally-founded colonies of P. metricus. We extended four fragments of putative hexamerin-encoding P. metricus transcripts acquired from a previous study and fully sequenced a gene that encodes Hexamerin 2, one of two proposed hexameric storage proteins of P. metricus. MALDI-TOF/TOF, LC-MSMS, deglycosylation, and detection of phosphorylation assays showed that the two putative hexamerins diverge in peptide sequence and biochemistry. We targeted the hexamerin 2 gene in 5th (last)-instar larvae by feeding RNAi-inducing double-stranded hexamerin 2 RNA directly to larvae in naturally-founded colonies in the field. Larval development and adult traits were not significantly altered in hexamerin 2 knockdowns, but there were suggestive trends toward increased developmental time and less developed ovaries, which are gyne characteristics. By demonstrating how data acquisition from 454/Roche pyrosequencing can be combined with biochemical and proteomics assays and how RNAi can be deployed successfully in field experiments on Polistes, our results pave the way for functional genomic research that can contribute significantly to learning the interactions of environment, development, and the roles they play in paper wasp evolution and behavioral ecology.

ContributorsHunt, James H. (Author) / Mutti, Navdeep (Author) / Havukainen, Heli (Author) / Henshaw, Michael T. (Author) / Amdam, Gro (Author) / College of Liberal Arts and Sciences (Contributor)
Created2011-11-01
128856-Thumbnail Image.png
Description

Background: Phosphatase and TENsin (PTEN) homolog is a negative regulator that takes part in IIS (insulin/insulin-like signaling) and Egfr (epidermal growth factor receptor) activation in Drosophila melanogaster. IIS and Egfr signaling events are also involved in the developmental process of queen and worker differentiation in honey bees (Apis mellifera). Here, we

Background: Phosphatase and TENsin (PTEN) homolog is a negative regulator that takes part in IIS (insulin/insulin-like signaling) and Egfr (epidermal growth factor receptor) activation in Drosophila melanogaster. IIS and Egfr signaling events are also involved in the developmental process of queen and worker differentiation in honey bees (Apis mellifera). Here, we characterized the bee PTEN gene homologue for the first time and begin to explore its potential function during bee development and adult life.

Results: Honey bee PTEN is alternatively spliced, resulting in three splice variants. Next, we show that the expression of PTEN can be down-regulated by RNA interference (RNAi) in the larval stage, when female caste fate is determined. Relative to controls, we observed that RNAi efficacy is dependent on the amount of PTEN dsRNA that is delivered to larvae. For larvae fed queen or worker diets containing a high amount of PTEN dsRNA, PTEN knockdown was significant at a whole-body level but lethal. A lower dosage did not result in a significant gene down-regulation. Finally, we compared same-aged adult workers with different behavior: nursing vs. foraging. We show that between nurses and foragers, PTEN isoforms were differentially expressed within brain, ovary and fat body tissues. All isoforms were expressed at higher levels in the brain and ovaries of the foragers. In fat body, isoform B was expressed at higher level in the nurse bees.

Conclusion: Our results suggest that PTEN plays a central role during growth and development in queen- and worker-destined honey bees. In adult workers, moreover, tissue-specific patterns of PTEN isoform expression are correlated with differences in complex division of labor between same-aged individuals. Therefore, we propose that knowledge on the roles of IIS and Egfr activity in developmental and behavioral control may increase through studies of how PTEN functions can impact bee social phenotypes.

ContributorsMutti, Navdeep (Author) / Wang, Ying (Author) / Kaftanoglu, Osman (Author) / Amdam, Gro (Author) / College of Liberal Arts and Sciences (Contributor)
Created2011-07-14
129013-Thumbnail Image.png
Description

Background: Juvenile hormone (JH) has been demonstrated to control adult lifespan in a number of non-model insects where surgical removal of the corpora allata eliminates the hormone’s source. In contrast, little is known about how juvenile hormone affects adult Drosophila melanogaster. Previous work suggests that insulin signaling may modulate Drosophila aging

Background: Juvenile hormone (JH) has been demonstrated to control adult lifespan in a number of non-model insects where surgical removal of the corpora allata eliminates the hormone’s source. In contrast, little is known about how juvenile hormone affects adult Drosophila melanogaster. Previous work suggests that insulin signaling may modulate Drosophila aging in part through its impact on juvenile hormone titer, but no data yet address whether reduction of juvenile hormone is sufficient to control Drosophila life span. Here we adapt a genetic approach to knock out the corpora allata in adult Drosophila melanogaster and characterize adult life history phenotypes produced by reduction of juvenile hormone. With this system we test potential explanations for how juvenile hormone modulates aging.

Results: A tissue specific driver inducing an inhibitor of a protein phosphatase was used to ablate the corpora allata while permitting normal development of adult flies. Corpora allata knockout adults had greatly reduced fecundity, inhibited oogenesis, impaired adult fat body development and extended lifespan. Treating these adults with the juvenile hormone analog methoprene restored all traits toward wildtype. Knockout females remained relatively long-lived even when crossed into a genotype that blocked all egg production. Dietary restriction further extended the lifespan of knockout females. In an analysis of expression profiles of knockout females in fertile and sterile backgrounds, about 100 genes changed in response to loss of juvenile hormone independent of reproductive state.

Conclusions: Reduced juvenile hormone alone is sufficient to extend the lifespan of Drosophila melanogaster. Reduced juvenile hormone limits reproduction by inhibiting the production of yolked eggs, and this may arise because juvenile hormone is required for the post-eclosion development of the vitellogenin-producing adult fat body. Our data do not support a mechanism for juvenile hormone control of longevity simply based on reducing the physiological costs of egg production. Nor does the longevity benefit appear to function through mechanisms by which dietary restriction extends longevity. We identify transcripts that change in response to juvenile hormone independent of reproductive state and suggest these represent somatically expressed genes that could modulate how juvenile hormone controls persistence and longevity.

ContributorsYamamoto, Rochelle (Author) / Bai, Hua (Author) / Dolezal, Adam (Author) / Amdam, Gro (Author) / Tatar, Marc (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-07-17
129031-Thumbnail Image.png
Description

Background: Gene bodies are the most evolutionarily conserved targets of DNA methylation in eukaryotes. However, the regulatory functions of gene body DNA methylation remain largely unknown. DNA methylation in insects appears to be primarily confined to exons. Two recent studies in Apis mellifera (honeybee) and Nasonia vitripennis (jewel wasp) analyzed transcription

Background: Gene bodies are the most evolutionarily conserved targets of DNA methylation in eukaryotes. However, the regulatory functions of gene body DNA methylation remain largely unknown. DNA methylation in insects appears to be primarily confined to exons. Two recent studies in Apis mellifera (honeybee) and Nasonia vitripennis (jewel wasp) analyzed transcription and DNA methylation data for one gene in each species to demonstrate that exon-specific DNA methylation may be associated with alternative splicing events. In this study we investigated the relationship between DNA methylation, alternative splicing, and cross-species gene conservation on a genome-wide scale using genome-wide transcription and DNA methylation data.

Results: We generated RNA deep sequencing data (RNA-seq) to measure genome-wide mRNA expression at the exon- and gene-level. We produced a de novo transcriptome from this RNA-seq data and computationally predicted splice variants for the honeybee genome. We found that exons that are included in transcription are higher methylated than exons that are skipped during transcription. We detected enrichment for alternative splicing among methylated genes compared to unmethylated genes using fisher’s exact test. We performed a statistical analysis to reveal that the presence of DNA methylation or alternative splicing are both factors associated with a longer gene length and a greater number of exons in genes. In concordance with this observation, a conservation analysis using BLAST revealed that each of these factors is also associated with higher cross-species gene conservation.

Conclusions: This study constitutes the first genome-wide analysis exhibiting a positive relationship between exon-level DNA methylation and mRNA expression in the honeybee. Our finding that methylated genes are enriched for alternative splicing suggests that, in invertebrates, exon-level DNA methylation may play a role in the construction of splice variants by positively influencing exon inclusion during transcription. The results from our cross-species homology analysis suggest that DNA methylation and alternative splicing are genetic mechanisms whose utilization could contribute to a longer gene length and a slower rate of gene evolution.

ContributorsFlores, Kevin (Author) / Wolschin, Florian (Author) / Corneveaux, Jason J. (Author) / Allen, April N. (Author) / Huentelman, Matthew J. (Author) / Amdam, Gro (Author) / College of Liberal Arts and Sciences (Contributor)
Created2012-09-15
128295-Thumbnail Image.png
Description

Epigenetic changes enable genomes to respond to changes in the environment, such as altered nutrition, activity, or social setting. Epigenetic modifications, thereby, provide a source of phenotypic plasticity in many species. The honey bee (Apis mellifera) uses nutritionally sensitive epigenetic control mechanisms in the development of the royal caste (queens)

Epigenetic changes enable genomes to respond to changes in the environment, such as altered nutrition, activity, or social setting. Epigenetic modifications, thereby, provide a source of phenotypic plasticity in many species. The honey bee (Apis mellifera) uses nutritionally sensitive epigenetic control mechanisms in the development of the royal caste (queens) and the workers. The workers are functionally sterile females that can take on a range of distinct physiological and/or behavioral phenotypes in response to environmental changes. Honey bees have a wide repertoire of epigenetic mechanisms which, as in mammals, include cytosine methylation, hydroxymethylated cytosines, together with the enzymatic machinery responsible for these cytosine modifications. Current data suggests that honey bees provide an excellent system for studying the “social repertoire” of the epigenome. In this review, we elucidate what is known so far about the honey bee epigenome and its mechanisms. Our discussion includes what may distinguish honey bees from other model animals, how the epigenome can influence worker behavioral task separation, and how future studies can answer central questions about the role of the epigenome in social behavior.

ContributorsRasmussen, Erik M. K. (Author) / Amdam, Gro (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-02-06
128250-Thumbnail Image.png
Description

Many drugs are effective in the early stage of treatment, but patients develop drug resistance after a certain period of treatment, causing failure of the therapy. An important example is Herceptin, a popular monoclonal antibody drug for breast cancer by specifically targeting human epidermal growth factor receptor 2 (Her2). Here

Many drugs are effective in the early stage of treatment, but patients develop drug resistance after a certain period of treatment, causing failure of the therapy. An important example is Herceptin, a popular monoclonal antibody drug for breast cancer by specifically targeting human epidermal growth factor receptor 2 (Her2). Here we demonstrate a quantitative binding kinetics analysis of drug-target interactions to investigate the molecular scale origin of drug resistance. Using a surface plasmon resonance imaging, we measured the in situ Herceptin-Her2 binding kinetics in single intact cancer cells for the first time, and observed significantly weakened Herceptin-Her2 interactions in Herceptin-resistant cells, compared to those in Herceptin-sensitive cells. We further showed that the steric hindrance of Mucin-4, a membrane protein, was responsible for the altered drug-receptor binding. This effect of a third molecule on drug-receptor interactions cannot be studied using traditional purified protein methods, demonstrating the importance of the present intact cell-based binding kinetics analysis.

ContributorsWang, Wei (Author) / Yin, Linliang (Author) / Gonzalez-Malerva, Laura (Author) / Wang, Shaopeng (Author) / Yu, Xiaobo (Author) / Eaton, Seron (Author) / Zhang, Shengtao (Author) / Chen, Hong-Yuan (Author) / LaBaer, Joshua (Author) / Tao, Nongjian (Author) / Biodesign Institute (Contributor)
Created2014-10-14