This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 23
Filtering by

Clear all filters

129370-Thumbnail Image.png
Description

Adaptation requires genetic variation, but founder populations are generally genetically depleted. Here we sequence two populations of an inbred ant that diverge in phenotype to determine how variability is generated. Cardiocondyla obscurior has the smallest of the sequenced ant genomes and its structure suggests a fundamental role of transposable elements

Adaptation requires genetic variation, but founder populations are generally genetically depleted. Here we sequence two populations of an inbred ant that diverge in phenotype to determine how variability is generated. Cardiocondyla obscurior has the smallest of the sequenced ant genomes and its structure suggests a fundamental role of transposable elements (TEs) in adaptive evolution. Accumulations of TEs (TE islands) comprising 7.18% of the genome evolve faster than other regions with regard to single-nucleotide variants, gene/exon duplications and deletions and gene homology. A non-random distribution of gene families, larvae/adult specific gene expression and signs of differential methylation in TE islands indicate intragenomic differences in regulation, evolutionary rates and coalescent effective population size. Our study reveals a tripartite interplay between TEs, life history and adaptation in an invasive species.

ContributorsSchrader, Lukas (Author) / Kim, Jay W. (Author) / Ence, Daniel (Author) / Zimin, Aleksey (Author) / Klein, Antonia (Author) / Wyschetzki, Katharina (Author) / Weichselgartner, Tobias (Author) / Kemena, Carsten (Author) / Stoekl, Johannes (Author) / Schultner, Eva (Author) / Wurm, Yannick (Author) / Smith, Christopher D. (Author) / Yandell, Mark (Author) / Heinze, Juergen (Author) / Gadau, Juergen (Author) / Oettler, Jan (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-12-01
129287-Thumbnail Image.png
Description

The phenomenon of Fano resonance is ubiquitous in a large variety of wave scattering systems, where the resonance profile is typically asymmetric. Whether the parameter characterizing the asymmetry should be complex or real is an issue of great experimental interest. Using coherent quantum transport as a paradigm and taking into

The phenomenon of Fano resonance is ubiquitous in a large variety of wave scattering systems, where the resonance profile is typically asymmetric. Whether the parameter characterizing the asymmetry should be complex or real is an issue of great experimental interest. Using coherent quantum transport as a paradigm and taking into account of the collective contribution from all available scattering channels, we derive a universal formula for the Fano-resonance profile. We show that our formula bridges naturally the traditional Fano formulas with complex and real asymmetry parameters, indicating that the two types of formulas are fundamentally equivalent (except for an offset). The connection also reveals a clear footprint for the conductance resonance during a dephasing process. Therefore, the emergence of complex asymmetric parameter when fitting with experimental data needs to be properly interpreted. Furthermore, we have provided a theory for the width of the resonance, which relates explicitly the width to the degree of localization of the close-by eigenstates and the corresponding coupling matrices or the self-energies caused by the leads. Our work not only resolves the issue about the nature of the asymmetry parameter, but also provides deeper physical insights into the origin of Fano resonance. Since the only assumption in our treatment is that the transport can be described by the Green’s function formalism, our results are also valid for broad disciplines including scattering problems of electromagnetic waves, acoustics, and seismology.

ContributorsHuang, Liang (Author) / Lai, Ying-Cheng (Author) / Luo, Hong-Gang (Author) / Grebogi, Celso (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-01-01
129298-Thumbnail Image.png
Description

Persistent currents (PCs), one of the most intriguing manifestations of the Aharonov-Bohm (AB) effect, are known to vanish for Schrödinger particles in the presence of random scatterings, e.g., due to classical chaos. But would this still be the case for Dirac fermions? Addressing this question is of significant value due

Persistent currents (PCs), one of the most intriguing manifestations of the Aharonov-Bohm (AB) effect, are known to vanish for Schrödinger particles in the presence of random scatterings, e.g., due to classical chaos. But would this still be the case for Dirac fermions? Addressing this question is of significant value due to the tremendous recent interest in two-dimensional Dirac materials. We investigate relativistic quantum AB rings threaded by a magnetic flux and find that PCs are extremely robust. Even for highly asymmetric rings that host fully developed classical chaos, the amplitudes of PCs are of the same order of magnitude as those for integrable rings, henceforth the term superpersistent currents (SPCs). A striking finding is that the SPCs can be attributed to a robust type of relativistic quantum states, i.e., Dirac whispering gallery modes (WGMs) that carry large angular momenta and travel along the boundaries. We propose an experimental scheme using topological insulators to observe and characterize Dirac WGMs and SPCs, and speculate that these features can potentially be the base for a new class of relativistic qubit systems. Our discovery of WGMs in relativistic quantum systems is remarkable because, although WGMs are common in photonic systems, they are relatively rare in electronic systems.

ContributorsXu, Hongya (Author) / Huang, Liang (Author) / Lai, Ying-Cheng (Author) / Grebogi, Celso (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-03-11
Description

We present a phylogeographic study of at least six reproductively isolated lineages of new world harvester ants within the Pogonomyrmex barbatus and P. rugosus species group. The genetic and geographic relationships within this clade are complex: Four of the identified lineages show genetic caste determination (GCD) and are divided into

We present a phylogeographic study of at least six reproductively isolated lineages of new world harvester ants within the Pogonomyrmex barbatus and P. rugosus species group. The genetic and geographic relationships within this clade are complex: Four of the identified lineages show genetic caste determination (GCD) and are divided into two pairs. Each pair has evolved under a mutualistic system that necessitates sympatry. These paired lineages are dependent upon one another because their GCD requires interlineage matings for the production of F1 hybrid workers, and intralineage matings are required to produce queens. This GCD system maintains genetic isolation among these interdependent lineages, while simultaneously requiring co-expansion and emigration as their distributions have changed over time. It has also been demonstrated that three of these four GCD lineages have undergone historical hybridization, but the narrower sampling range of previous studies has left questions on the hybrid parentage, breadth, and age of these groups. Thus, reconstructing the phylogenetic and geographic history of this group allows us to evaluate past insights and hypotheses and to plan future inquiries in a more complete historical biogeographic context. Using mitochondrial DNA sequences sampled across most of the morphospecies’ ranges in the U.S.A. and Mexico, we conducted a detailed phylogeographic study. Remarkably, our results indicate that one of the GCD lineage pairs has experienced a dramatic range expansion, despite the genetic load and fitness costs of the GCD system. Our analyses also reveal a complex pattern of vicariance and dispersal in Pogonomyrmex harvester ants that is largely concordant with models of late Miocene, Pliocene, and Pleistocene range shifts among various arid-adapted taxa in North America.

ContributorsMott, Brendon (Author) / Gadau, Juergen (Author) / Anderson, Kirk E. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-07-01
129181-Thumbnail Image.png
Description

Desaturase genes are essential for biological processes, including lipid metabolism, cell signaling, and membrane fluidity regulation. Insect desaturases are particularly interesting for their role in chemical communication, and potential contribution to speciation, symbioses, and sociality. Here, we describe the acyl-CoA desaturase gene families of 15 insects, with a focus on

Desaturase genes are essential for biological processes, including lipid metabolism, cell signaling, and membrane fluidity regulation. Insect desaturases are particularly interesting for their role in chemical communication, and potential contribution to speciation, symbioses, and sociality. Here, we describe the acyl-CoA desaturase gene families of 15 insects, with a focus on social Hymenoptera. Phylogenetic reconstruction revealed that the insect desaturases represent an ancient gene family characterized by eight subfamilies that differ strongly in their degree of conservation and frequency of gene gain and loss. Analyses of genomic organization showed that five of these subfamilies are represented in a highly microsyntenic region conserved across holometabolous insect taxa, indicating an ancestral expansion during early insect evolution. In three subfamilies, ants exhibit particularly large expansions of genes. Despite these expansions, however, selection analyses showed that desaturase genes in all insect lineages are predominantly undergoing strong purifying selection. Finally, for three expanded subfamilies, we show that ants exhibit variation in gene expression between species, and more importantly, between sexes and castes within species. This suggests functional differentiation of these genes and a role in the regulation of reproductive division of labor in ants. The dynamic pattern of gene gain and loss of acyl-CoA desaturases in ants may reflect changes in response to ecological diversification and an increased demand for chemical signal variability. This may provide an example of how gene family expansions can contribute to lineage-specific adaptations through structural and regulatory changes acting in concert to produce new adaptive phenotypes.

ContributorsHelmkampf, Martin (Author) / Cash, Elizabeth (Author) / Gadau, Juergen (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-02-01
127929-Thumbnail Image.png
Description

Previous studies in building energy assessment clearly state that to meet sustainable energy goals, existing buildings, as well as new buildings, will need to improve their energy efficiency. Thus, meeting energy goals relies on retrofitting existing buildings. Most building energy models are bottom-up engineering models, meaning these models calculate energy

Previous studies in building energy assessment clearly state that to meet sustainable energy goals, existing buildings, as well as new buildings, will need to improve their energy efficiency. Thus, meeting energy goals relies on retrofitting existing buildings. Most building energy models are bottom-up engineering models, meaning these models calculate energy demand of individual buildings through their physical properties and energy use for specific end uses (e.g., lighting, appliances, and water heating). Researchers then scale up these model results to represent the building stock of the region studied.

Studies reveal that there is a lack of information about the building stock and associated modeling tools and this lack of knowledge affects the assessment of building energy efficiency strategies. Literature suggests that the level of complexity of energy models needs to be limited. Accuracy of these energy models can be elevated by reducing the input parameters, alleviating the need for users to make many assumptions about building construction and occupancy, among other factors. To mitigate the need for assumptions and the resulting model inaccuracies, the authors argue buildings should be described in a regional stock model with a restricted number of input parameters. One commonly-accepted method of identifying critical input parameters is sensitivity analysis, which requires a large number of runs that are both time consuming and may require high processing capacity.

This paper utilizes the Energy, Carbon and Cost Assessment for Buildings Stocks (ECCABS) model, which calculates the net energy demand of buildings and presents aggregated and individual- building-level, demand for specific end uses, e.g., heating, cooling, lighting, hot water and appliances. The model has already been validated using the Swedish, Spanish, and UK building stock data. This paper discusses potential improvements to this model by assessing the feasibility of using stepwise regression to identify the most important input parameters using the data from UK residential sector. The paper presents results of stepwise regression and compares these to sensitivity analysis; finally, the paper documents the advantages and challenges associated with each method.

ContributorsArababadi, Reza (Author) / Naganathan, Hariharan (Author) / Parrish, Kristen (Author) / Chong, Oswald (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-09-14
127931-Thumbnail Image.png
Description

Construction waste management has become extremely important due to stricter disposal and landfill regulations, and a lesser number of available landfills. There are extensive works done on waste treatment and management of the construction industry. Concepts like deconstruction, recyclability, and Design for Disassembly (DfD) are examples of better construction waste

Construction waste management has become extremely important due to stricter disposal and landfill regulations, and a lesser number of available landfills. There are extensive works done on waste treatment and management of the construction industry. Concepts like deconstruction, recyclability, and Design for Disassembly (DfD) are examples of better construction waste management methods. Although some authors and organizations have published rich guides addressing the DfD's principles, there are only a few buildings already developed in this area. This study aims to find the challenges in the current practice of deconstruction activities and the gaps between its theory and implementation. Furthermore, it aims to provide insights about how DfD can create opportunities to turn these concepts into strategies that can be largely adopted by the construction industry stakeholders in the near future.

ContributorsRios, Fernanda (Author) / Chong, Oswald (Author) / Grau, David (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2015-09-14
127949-Thumbnail Image.png
Description

The United State generates the most waste among OECD countries, and there are adverse effects of the waste generation. One of the most serious adverse effects is greenhouse gas, especially CH4, which causes global warming. However, the amount of waste generation is not decreasing, and the United State recycling rate,

The United State generates the most waste among OECD countries, and there are adverse effects of the waste generation. One of the most serious adverse effects is greenhouse gas, especially CH4, which causes global warming. However, the amount of waste generation is not decreasing, and the United State recycling rate, which could reduce waste generation, is only 26%, which is lower than other OECD countries. Thus, waste generation and greenhouse gas emission should decrease, and in order for that to happen, identifying the causes should be made a priority. The research objective is to verify whether the Environmental Kuznets Curve relationship is supported for waste generation and GDP across the U.S. Moreover, it also confirmed that total waste generation and recycling waste influences carbon dioxide emissions from the waste sector. The annual-based U.S. data from 1990 to 2012 were used. The data were collected from various data sources, and the Granger causality test was applied for identifying the causal relationships. The results showed that there is no causality between GDP and waste generation, but total waste and recycling generation significantly cause positive and negative greenhouse gas emissions from the waste sector, respectively. This implies that the waste generation will not decrease even if GDP increases. And, if waste generation decreases or recycling rate increases, the greenhouse gas emission will decrease. Based on these results, it is expected that the waste generation and carbon dioxide emission from the waste sector can decrease more efficiently.

ContributorsLee, Seungtaek (Author) / Kim, Jonghoon (Author) / Chong, Oswald (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-05-20
127964-Thumbnail Image.png
Description

As the construction continue to be a leading industry in the number of injuries and fatalities annually, several organizations and agencies are working avidly to ensure the number of injuries and fatalities is minimized. The Occupational Safety and Health Administration (OSHA) is one such effort to assure safe and healthful

As the construction continue to be a leading industry in the number of injuries and fatalities annually, several organizations and agencies are working avidly to ensure the number of injuries and fatalities is minimized. The Occupational Safety and Health Administration (OSHA) is one such effort to assure safe and healthful working conditions for working men and women by setting and enforcing standards and by providing training, outreach, education and assistance. Given the large databases of OSHA historical events and reports, a manual analysis of the fatality and catastrophe investigations content is a time consuming and expensive process. This paper aims to evaluate the strength of unsupervised machine learning and Natural Language Processing (NLP) in supporting safety inspections and reorganizing accidents database on a state level. After collecting construction accident reports from the OSHA Arizona office, the methodology consists of preprocessing the accident reports and weighting terms in order to apply a data-driven unsupervised K-Means-based clustering approach. The proposed method classifies the collected reports in four clusters, each reporting a type of accident. The results show the construction accidents in the state of Arizona to be caused by falls (42.9%), struck by objects (34.3%), electrocutions (12.5%), and trenches collapse (10.3%). The findings of this research empower state and local agencies with a customized presentation of the accidents fitting their regulations and weather conditions. What is applicable to one climate might not be suitable for another; therefore, such rearrangement of the accidents database on a state based level is a necessary prerequisite to enhance the local safety applications and standards.

ContributorsChokor, Abbas (Author) / Naganathan, Hariharan (Author) / Chong, Oswald (Author) / El Asmar, Mounir (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-05-20
127976-Thumbnail Image.png
Description

Variation in behaviour among group members often impacts collective outcomes. Individuals may vary both in the task that they perform and in the persistence with which they perform each task. Although both the distribution of individuals among tasks and differences among individuals in behavioural persistence can each impact collective behaviour,

Variation in behaviour among group members often impacts collective outcomes. Individuals may vary both in the task that they perform and in the persistence with which they perform each task. Although both the distribution of individuals among tasks and differences among individuals in behavioural persistence can each impact collective behaviour, we do not know if and how they jointly affect collective outcomes. Here, we use a detailed computational model to examine the joint impact of colony-level distribution among tasks and behavioural persistence of individuals, specifically their fidelity to particular resource sites, on the collective trade-off between exploring for new resources and exploiting familiar ones. We developed an agent-based model of foraging honeybees, parametrized by data from five colonies, in which we simulated scouts, who search the environment for new resources, and individuals who are recruited by the scouts to the newly found resources, i.e. recruits. We varied the persistence of returning to a particular food source of both scouts and recruits and found that, for each value of persistence, there is a different optimal ratio of scouts to recruits that maximizes resource collection by the colony. Furthermore, changes to the persistence of scouts induced opposite effects from changes to the persistence of recruits on the collective foraging of the colony. The proportion of scouts that resulted in the most resources collected by the colony decreased as the persistence of recruits increased. However, this optimal proportion of scouts increased as the persistence of scouts increased. Thus, behavioural persistence and task participation can interact to impact a colony's collective behaviour in orthogonal directions. Our work provides new insights and generates new hypotheses into how variations in behaviour at both the individual and colony levels jointly impact the trade-off between exploring for new resources and exploiting familiar ones.

ContributorsMosqueiro, Thiago (Author) / Cook, Chelsea (Author) / Huerta, Ramon (Author) / Gadau, Juergen (Author) / Smith, Brian (Author) / Pinter-Wollman, Noa (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-08-30