This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 36
Filtering by

Clear all filters

129556-Thumbnail Image.png
Description

Dental microwear has been shown to reflect diet in a broad variety of fossil mammals. Recent studies have suggested that differences in microwear texture attributes between samples may also reflect environmental abrasive loads. Here, we examine dental microwear textures on the incisors of shrews, both to evaluate this idea and

Dental microwear has been shown to reflect diet in a broad variety of fossil mammals. Recent studies have suggested that differences in microwear texture attributes between samples may also reflect environmental abrasive loads. Here, we examine dental microwear textures on the incisors of shrews, both to evaluate this idea and to expand the extant baseline to include Soricidae. Specimens were chosen to sample a broad range of environments, semi-desert to rainforest. Species examined were all largely insectivorous, but some are reported to supplement their diets with vertebrate tissues and others with plant matter. Results indicate subtle but significant differences between samples grouped by both diet independent of environment and environment independent of diet. Subtle diet differences were more evident in microwear texture variation considered by habitat (i.e., grassland). These results suggest that while environment does not swamp the diet signal in shrew incisor microwear, studies can benefit from control of habitat type.

ContributorsWithnell, Charles (Author) / Ungar, Peter S. (Author) / School of Human Evolution and Social Change (Contributor)
Created2014-08-01
Description

Stone-tipped weapons were a significant innovation for Middle Pleistocene hominins. Hafted hunting technology represents the development of new cognitive and social learning mechanisms within the genus Homo, and may have provided a foraging advantage over simpler forms of hunting technology, such as a sharpened wooden spear. However, the nature of

Stone-tipped weapons were a significant innovation for Middle Pleistocene hominins. Hafted hunting technology represents the development of new cognitive and social learning mechanisms within the genus Homo, and may have provided a foraging advantage over simpler forms of hunting technology, such as a sharpened wooden spear. However, the nature of this foraging advantage has not been confirmed. Experimental studies and ethnographic reports provide conflicting results regarding the relative importance of the functional, economic, and social roles of hafted hunting technology. The controlled experiment reported here was designed to test the functional hypothesis for stone-tipped weapons using spears and ballistics gelatin. It differs from previous investigations of this type because it includes a quantitative analysis of wound track profiles and focuses specifically on hand-delivered spear technology. Our results do not support the hypothesis that tipped spears penetrate deeper than untipped spears. However, tipped spears create a significantly larger inner wound cavity that widens distally. This inner wound cavity is analogous to the permanent wound cavity in ballistics research, which is considered the key variable affecting the relative ‘stopping power’ or ‘killing power’ of a penetrating weapon. Tipped spears conferred a functional advantage to Middle Pleistocene hominins, potentially affecting the frequency and regularity of hunting success with important implications for human adaptation and life history.

ContributorsWilkins, Jayne (Author) / Schoville, Benjamin (Author) / Brown, Kyle S. (Author) / School of Human Evolution and Social Change (Contributor)
Created2014-08-27
129370-Thumbnail Image.png
Description

Adaptation requires genetic variation, but founder populations are generally genetically depleted. Here we sequence two populations of an inbred ant that diverge in phenotype to determine how variability is generated. Cardiocondyla obscurior has the smallest of the sequenced ant genomes and its structure suggests a fundamental role of transposable elements

Adaptation requires genetic variation, but founder populations are generally genetically depleted. Here we sequence two populations of an inbred ant that diverge in phenotype to determine how variability is generated. Cardiocondyla obscurior has the smallest of the sequenced ant genomes and its structure suggests a fundamental role of transposable elements (TEs) in adaptive evolution. Accumulations of TEs (TE islands) comprising 7.18% of the genome evolve faster than other regions with regard to single-nucleotide variants, gene/exon duplications and deletions and gene homology. A non-random distribution of gene families, larvae/adult specific gene expression and signs of differential methylation in TE islands indicate intragenomic differences in regulation, evolutionary rates and coalescent effective population size. Our study reveals a tripartite interplay between TEs, life history and adaptation in an invasive species.

ContributorsSchrader, Lukas (Author) / Kim, Jay W. (Author) / Ence, Daniel (Author) / Zimin, Aleksey (Author) / Klein, Antonia (Author) / Wyschetzki, Katharina (Author) / Weichselgartner, Tobias (Author) / Kemena, Carsten (Author) / Stoekl, Johannes (Author) / Schultner, Eva (Author) / Wurm, Yannick (Author) / Smith, Christopher D. (Author) / Yandell, Mark (Author) / Heinze, Juergen (Author) / Gadau, Juergen (Author) / Oettler, Jan (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-12-01
129244-Thumbnail Image.png
Description

Collective behaviors in social insect societies often emerge from simple local rules. However, little is known about how these behaviors are dynamically regulated in response to environmental changes. Here, we use a compartmental modeling approach to identify factors that allow harvester ant colonies to regulate collective foraging activity in response

Collective behaviors in social insect societies often emerge from simple local rules. However, little is known about how these behaviors are dynamically regulated in response to environmental changes. Here, we use a compartmental modeling approach to identify factors that allow harvester ant colonies to regulate collective foraging activity in response to their environment. We propose a set of differential equations describing the dynamics of: (1) available foragers inside the nest, (2) active foragers outside the nest, and (3) successful returning foragers, to understand how colony-specific parameters, such as baseline number of foragers, interactions among foragers, food discovery rates, successful forager return rates, and foraging duration might influence collective foraging dynamics, while maintaining functional robustness to perturbations. Our analysis indicates that the model can undergo a forward (transcritical) bifurcation or a backward bifurcation depending on colony-specific parameters. In the former case, foraging activity persists when the average number of recruits per successful returning forager is larger than one. In the latter case, the backward bifurcation creates a region of bistability in which the size and fate of foraging activity depends on the distribution of the foraging workforce among the model׳s compartments. We validate the model with experimental data from harvester ants (Pogonomyrmex barbatus) and perform sensitivity analysis. Our model provides insights on how simple, local interactions can achieve an emergent and robust regulatory system of collective foraging activity in ant colonies.

Created2015-02-21
129001-Thumbnail Image.png
Description

Background: Influenza viruses are a major cause of morbidity and mortality worldwide. Vaccination remains a powerful tool for preventing or mitigating influenza outbreaks. Yet, vaccine supplies and daily administration capacities are limited, even in developed countries. Understanding how such constraints can alter the mitigating effects of vaccination is a crucial part

Background: Influenza viruses are a major cause of morbidity and mortality worldwide. Vaccination remains a powerful tool for preventing or mitigating influenza outbreaks. Yet, vaccine supplies and daily administration capacities are limited, even in developed countries. Understanding how such constraints can alter the mitigating effects of vaccination is a crucial part of influenza preparedness plans. Mathematical models provide tools for government and medical officials to assess the impact of different vaccination strategies and plan accordingly. However, many existing models of vaccination employ several questionable assumptions, including a rate of vaccination proportional to the population at each point in time.

Methods: We present a SIR-like model that explicitly takes into account vaccine supply and the number of vaccines administered per day and places data-informed limits on these parameters. We refer to this as the non-proportional model of vaccination and compare it to the proportional scheme typically found in the literature.

Results: The proportional and non-proportional models behave similarly for a few different vaccination scenarios. However, there are parameter regimes involving the vaccination campaign duration and daily supply limit for which the non-proportional model predicts smaller epidemics that peak later, but may last longer, than those of the proportional model. We also use the non-proportional model to predict the mitigating effects of variably timed vaccination campaigns for different levels of vaccination coverage, using specific constraints on daily administration capacity.

Conclusions: The non-proportional model of vaccination is a theoretical improvement that provides more accurate predictions of the mitigating effects of vaccination on influenza outbreaks than the proportional model. In addition, parameters such as vaccine supply and daily administration limit can be easily adjusted to simulate conditions in developed and developing nations with a wide variety of financial and medical resources. Finally, the model can be used by government and medical officials to create customized pandemic preparedness plans based on the supply and administration constraints of specific communities.

Created2011-08-01
128953-Thumbnail Image.png
Description

Background: On 31 March 2013, the first human infections with the novel influenza A/H7N9 virus were reported in Eastern China. The outbreak expanded rapidly in geographic scope and size, with a total of 132 laboratory-confirmed cases reported by 3 June 2013, in 10 Chinese provinces and Taiwan. The incidence of A/H7N9

Background: On 31 March 2013, the first human infections with the novel influenza A/H7N9 virus were reported in Eastern China. The outbreak expanded rapidly in geographic scope and size, with a total of 132 laboratory-confirmed cases reported by 3 June 2013, in 10 Chinese provinces and Taiwan. The incidence of A/H7N9 cases has stalled in recent weeks, presumably as a consequence of live bird market closures in the most heavily affected areas. Here we compare the transmission potential of influenza A/H7N9 with that of other emerging pathogens and evaluate the impact of intervention measures in an effort to guide pandemic preparedness.

Methods: We used a Bayesian approach combined with a SEIR (Susceptible-Exposed-Infectious-Removed) transmission model fitted to daily case data to assess the reproduction number (R) of A/H7N9 by province and to evaluate the impact of live bird market closures in April and May 2013. Simulation studies helped quantify the performance of our approach in the context of an emerging pathogen, where human-to-human transmission is limited and most cases arise from spillover events. We also used alternative approaches to estimate R based on individual-level information on prior exposure and compared the transmission potential of influenza A/H7N9 with that of other recent zoonoses.

Results: Estimates of R for the A/H7N9 outbreak were below the epidemic threshold required for sustained human-to-human transmission and remained near 0.1 throughout the study period, with broad 95% credible intervals by the Bayesian method (0.01 to 0.49). The Bayesian estimation approach was dominated by the prior distribution, however, due to relatively little information contained in the case data. We observe a statistically significant deceleration in growth rate after 6 April 2013, which is consistent with a reduction in A/H7N9 transmission associated with the preemptive closure of live bird markets. Although confidence intervals are broad, the estimated transmission potential of A/H7N9 appears lower than that of recent zoonotic threats, including avian influenza A/H5N1, swine influenza H3N2sw and Nipah virus.

Conclusion: Although uncertainty remains high in R estimates for H7N9 due to limited epidemiological information, all available evidence points to a low transmission potential. Continued monitoring of the transmission potential of A/H7N9 is critical in the coming months as intervention measures may be relaxed and seasonal factors could promote disease transmission in colder months.

Created2013-10-02
128959-Thumbnail Image.png
Description

Background: The impact of socio-demographic factors and baseline health on the mortality burden of seasonal and pandemic influenza remains debated. Here we analyzed the spatial-temporal mortality patterns of the 1918 influenza pandemic in Spain, one of the countries of Europe that experienced the highest mortality burden.

Methods: We analyzed monthly death rates from

Background: The impact of socio-demographic factors and baseline health on the mortality burden of seasonal and pandemic influenza remains debated. Here we analyzed the spatial-temporal mortality patterns of the 1918 influenza pandemic in Spain, one of the countries of Europe that experienced the highest mortality burden.

Methods: We analyzed monthly death rates from respiratory diseases and all-causes across 49 provinces of Spain, including the Canary and Balearic Islands, during the period January-1915 to June-1919. We estimated the influenza-related excess death rates and risk of death relative to baseline mortality by pandemic wave and province. We then explored the association between pandemic excess mortality rates and health and socio-demographic factors, which included population size and age structure, population density, infant mortality rates, baseline death rates, and urbanization.

Results: Our analysis revealed high geographic heterogeneity in pandemic mortality impact. We identified 3 pandemic waves of varying timing and intensity covering the period from Jan-1918 to Jun-1919, with the highest pandemic-related excess mortality rates occurring during the months of October-November 1918 across all Spanish provinces. Cumulative excess mortality rates followed a south–north gradient after controlling for demographic factors, with the North experiencing highest excess mortality rates. A model that included latitude, population density, and the proportion of children living in provinces explained about 40% of the geographic variability in cumulative excess death rates during 1918–19, but different factors explained mortality variation in each wave.

Conclusions: A substantial fraction of the variability in excess mortality rates across Spanish provinces remained unexplained, which suggests that other unidentified factors such as comorbidities, climate and background immunity may have affected the 1918-19 pandemic mortality rates. Further archeo-epidemiological research should concentrate on identifying settings with combined availability of local historical mortality records and information on the prevalence of underlying risk factors, or patient-level clinical data, to further clarify the drivers of 1918 pandemic influenza mortality.

Created2014-07-05
129120-Thumbnail Image.png
Description

Background: Ebola is one of the most virulent human viral diseases, with a case fatality ratio between 25% to 90%. The 2014 West African outbreaks are the largest and worst in history. There is no specific treatment or effective/safe vaccine against the disease. Hence, control efforts are restricted to basic

Background: Ebola is one of the most virulent human viral diseases, with a case fatality ratio between 25% to 90%. The 2014 West African outbreaks are the largest and worst in history. There is no specific treatment or effective/safe vaccine against the disease. Hence, control efforts are restricted to basic public health preventive (non-pharmaceutical) measures. Such efforts are undermined by traditional/cultural belief systems and customs, characterized by general mistrust and skepticism against government efforts to combat the disease. This study assesses the roles of traditional customs and public healthcare systems on the disease spread.

Methods: A mathematical model is designed and used to assess population-level impact of basic non-pharmaceutical control measures on the 2014 Ebola outbreaks. The model incorporates the effects of traditional belief systems and customs, along with disease transmission within health-care settings and by Ebola-deceased individuals. A sensitivity analysis is performed to determine model parameters that most affect disease transmission. The model is parameterized using data from Guinea, one of the three Ebola-stricken countries. Numerical simulations are performed and the parameters that drive disease transmission, with or without basic public health control measures, determined. Three effectiveness levels of such basic measures are considered.

Results: The distribution of the basic reproduction number (R0) for Guinea (in the absence of basic control measures) is such that R 0 ∈ [0.77,1.35], for the case when the belief systems do not result in more unreported Ebola cases. When such systems inhibit control efforts, the distribution increases to R 0 ∈ [1.15,2.05]. The total Ebola cases are contributed by Ebola-deceased individuals (22%), symptomatic individuals in the early (33%) and latter (45%) infection stages. A significant reduction of new Ebola cases can be achieved by increasing health-care workers’ daily shifts from 8 to 24 hours, limiting hospital visitation to 1 hour and educating the populace to abandon detrimental traditional/cultural belief systems.

Conclusions: The 2014 outbreaks are controllable using a moderately-effective basic public health intervention strategy alone. A much higher (>50%) disease burden would have been recorded in the absence of such intervention.

Created2015-04-23
129124-Thumbnail Image.png
Description

For more than 80 years, Proconsul has held a pivotal position in interpretations of catarrhine evolution in East Africa. From early hypotheses of phyletic relationships with modern apes to more recent debates over their position within Hominoidea, the well-preserved fossils of this genus have been a foundation for most evolutionary

For more than 80 years, Proconsul has held a pivotal position in interpretations of catarrhine evolution in East Africa. From early hypotheses of phyletic relationships with modern apes to more recent debates over their position within Hominoidea, the well-preserved fossils of this genus have been a foundation for most evolutionary scenarios regarding the early diversification of hominoids. The majority of what we "know" about Proconsul, however, derives from abundant younger fossils found at the Kisingiri localities on Rusinga and Mfangano Islands rather than from the smaller samples found at Koru – the locality of the type species, Proconsul africanus – and other Tinderet deposits. One outcome of this is seen in recent attempts to expand the genus "Ugandapithecus" (considered here a junior subjective synonym of Proconsul), wherein much of the Tinderet sample was referred to that genus based primarily on differentiating it from the Kisingiri specimens rather than from the type species, P. africanus. This and other recent taxonomic revisions to Proconsul prompted us to undertake a systematic review of dentognathic specimens attributed to this taxon. Results of our study underscore and extend the substantive distinction of Tinderet and Ugandan Proconsul (i.e., Proconsul sensu stricto) from the Kisingiri fossils, the latter recognized here as a new genus. Specimens of the new genus are readily distinguished from Proconsul sensu stricto by morphology preserved in the P. africanus holotype, M 14084, but also in I1s, lower incisors, upper and lower canines, and especially mandibular characteristics. A number of these differences are more advanced among Kisingiri specimens in the direction of crown hominoids. Proconsul sensu stricto is characterized by a suite of unique features that strongly unite the included species as a clade. There have been decades of contentious debate over the phylogenetic placement of Proconsul (sensu lato), due in part to there being a mixture of primitive and more advanced morphology within the single genus. By recognizing two distinct clades that, in large part, segregate these character states, we believe that better phylogenetic resolution can be achieved.

ContributorsMcNulty, Kieran P. (Author) / Begun, David R. (Author) / Kelley, Jay (Author) / Manthi, Fredrick K. (Author) / Mbua, Emma N. (Author) / School of Human Evolution and Social Change (Contributor)
Created2015-07-01
Description

We present a phylogeographic study of at least six reproductively isolated lineages of new world harvester ants within the Pogonomyrmex barbatus and P. rugosus species group. The genetic and geographic relationships within this clade are complex: Four of the identified lineages show genetic caste determination (GCD) and are divided into

We present a phylogeographic study of at least six reproductively isolated lineages of new world harvester ants within the Pogonomyrmex barbatus and P. rugosus species group. The genetic and geographic relationships within this clade are complex: Four of the identified lineages show genetic caste determination (GCD) and are divided into two pairs. Each pair has evolved under a mutualistic system that necessitates sympatry. These paired lineages are dependent upon one another because their GCD requires interlineage matings for the production of F1 hybrid workers, and intralineage matings are required to produce queens. This GCD system maintains genetic isolation among these interdependent lineages, while simultaneously requiring co-expansion and emigration as their distributions have changed over time. It has also been demonstrated that three of these four GCD lineages have undergone historical hybridization, but the narrower sampling range of previous studies has left questions on the hybrid parentage, breadth, and age of these groups. Thus, reconstructing the phylogenetic and geographic history of this group allows us to evaluate past insights and hypotheses and to plan future inquiries in a more complete historical biogeographic context. Using mitochondrial DNA sequences sampled across most of the morphospecies’ ranges in the U.S.A. and Mexico, we conducted a detailed phylogeographic study. Remarkably, our results indicate that one of the GCD lineage pairs has experienced a dramatic range expansion, despite the genetic load and fitness costs of the GCD system. Our analyses also reveal a complex pattern of vicariance and dispersal in Pogonomyrmex harvester ants that is largely concordant with models of late Miocene, Pliocene, and Pleistocene range shifts among various arid-adapted taxa in North America.

ContributorsMott, Brendon (Author) / Gadau, Juergen (Author) / Anderson, Kirk E. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-07-01