This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 18
Filtering by

Clear all filters

129552-Thumbnail Image.png
Description

S-cysteinylated albumin and methionine-oxidized apolipoprotein A-I (apoA-I) have been posed as candidate markers of diseases associated with oxidative stress. Here, a dilute-and-shoot form of LC–electrospray ionization–MS requiring half a microliter of blood plasma was employed to simultaneously quantify the relative abundance of these oxidized proteoforms in samples stored at −80

S-cysteinylated albumin and methionine-oxidized apolipoprotein A-I (apoA-I) have been posed as candidate markers of diseases associated with oxidative stress. Here, a dilute-and-shoot form of LC–electrospray ionization–MS requiring half a microliter of blood plasma was employed to simultaneously quantify the relative abundance of these oxidized proteoforms in samples stored at −80 °C, −20 °C, and room temperature and exposed to multiple freeze-thaw cycles and other adverse conditions in order to assess the possibility that protein oxidation may occur as a result of poor sample storage or handling. Samples from a healthy donor and a participant with poorly controlled type 2 diabetes started at the same low level of protein oxidation and behaved similarly; significant increases in albumin oxidation via S-cysteinylation were found to occur within hours at room temperature and days at −20 °C. Methionine oxidation of apoA-I took place on a longer time scale, setting in after albumin oxidation reached a plateau. Freeze–thaw cycles had a minimal effect on protein oxidation. In matched collections, protein oxidation in serum was the same as that in plasma. Albumin and apoA-I oxidation were not affected by sample headspace or the degree to which vials were sealed. ApoA-I, however, was unexpectedly found to oxidize faster in samples with lower surface-area-to-volume ratios. An initial survey of samples from patients with inflammatory conditions normally associated with elevated oxidative stress-including acute myocardial infarction and prostate cancer—demonstrated a lack of detectable apoA-I oxidation. Albumin S-cysteinylation in these samples was consistent with known but relatively brief exposures to temperatures above −30 °C (the freezing point of blood plasma). Given their properties and ease of analysis, these oxidized proteoforms, once fully validated, may represent the first markers of blood plasma specimen integrity based on direct measurement of oxidative molecular damage that can occur under suboptimal storage conditions.

ContributorsBorges, Chad (Author) / Rehder, Douglas (Author) / Jensen, Sally (Author) / Schaab, Matthew (Author) / Sherma, Nisha (Author) / Yassine, Hussein (Author) / Nikolova, Boriana (Author) / Breburda, Christian (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2014-07-01
129193-Thumbnail Image.png
Description

Plasmonic and metamaterial based nano/micro-structured materials enable spectrally selective resonant absorption, where the resonant bandwidth and absorption intensity can be engineered by controlling the size and geometry of nanostructures. Here, we demonstrate a simple, lithography-free approach for obtaining a resonant and dynamically tunable broadband absorber based on vanadium dioxide (VO2)

Plasmonic and metamaterial based nano/micro-structured materials enable spectrally selective resonant absorption, where the resonant bandwidth and absorption intensity can be engineered by controlling the size and geometry of nanostructures. Here, we demonstrate a simple, lithography-free approach for obtaining a resonant and dynamically tunable broadband absorber based on vanadium dioxide (VO2) phase transition. Using planar layered thin film structures, where top layer is chosen to be an ultrathin (20 nm) VO2 film, we demonstrate broadband IR light absorption tuning (from similar to 90% to similar to 30% in measured absorption) over the entire mid-wavelength infrared spectrum. Our numerical and experimental results indicate that the bandwidth of the absorption bands can be controlled by changing the dielectric spacer layer thickness. Broadband tunable absorbers can find applications in absorption filters, thermal emitters, thermophotovoltaics, and sensing.

ContributorsKocer, Hasan (Author) / Butun, Serkan (Author) / Palacios, Edgar (Author) / Liu, Zizhuo (Author) / Tongay, Sefaattin (Author) / Fu, Deyi (Author) / Wang, Kevin (Author) / Wu, Junqiao (Author) / Aydin, Koray (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-08-21
128975-Thumbnail Image.png
Description

Background: Cysteine sulfenic acid (Cys-SOH) plays important roles in the redox regulation of numerous proteins. As a relatively unstable posttranslational protein modification it is difficult to quantify the degree to which any particular protein is modified by Cys-SOH within a complex biological environment. The goal of these studies was to move

Background: Cysteine sulfenic acid (Cys-SOH) plays important roles in the redox regulation of numerous proteins. As a relatively unstable posttranslational protein modification it is difficult to quantify the degree to which any particular protein is modified by Cys-SOH within a complex biological environment. The goal of these studies was to move a step beyond detection and into the relative quantification of Cys-SOH within specific proteins found in a complex biological setting--namely, human plasma.

Results: This report describes the possibilities and limitations of performing such analyses based on the use of thionitrobenzoic acid and dimedone-based probes which are commonly employed to trap Cys-SOH. Results obtained by electrospray ionization-based mass spectrometric immunoassay reveal the optimal type of probe for such analyses as well as the reproducible relative quantification of Cys-SOH within albumin and transthyretin extracted from human plasma--the latter as a protein previously unknown to be modified by Cys-SOH.

Conclusions: The relative quantification of Cys-SOH within specific proteins in a complex biological setting can be accomplished, but several analytical precautions related to trapping, detecting, and quantifying Cys-SOH must be taken into account prior to pursuing its study in such matrices.

ContributorsRehder, Douglas (Author) / Borges, Chad (Author) / Biodesign Institute (Contributor)
Created2010-07-01
128773-Thumbnail Image.png
Description

Serum Amyloid A (SAA) is an acute phase protein complex consisting of several abundant isoforms. The N- terminus of SAA is critical to its function in amyloid formation. SAA is frequently truncated, either missing an arginine or an arginine-serine dipeptide, resulting in isoforms that may influence the capacity to form

Serum Amyloid A (SAA) is an acute phase protein complex consisting of several abundant isoforms. The N- terminus of SAA is critical to its function in amyloid formation. SAA is frequently truncated, either missing an arginine or an arginine-serine dipeptide, resulting in isoforms that may influence the capacity to form amyloid. However, the relative abundance of truncated SAA in diabetes and chronic kidney disease is not known.

Methods: Using mass spectrometric immunoassay, the abundance of SAA truncations relative to the native variants was examined in plasma of 91 participants with type 2 diabetes and chronic kidney disease and 69 participants without diabetes.

Results: The ratio of SAA 1.1 (missing N-terminal arginine) to native SAA 1.1 was lower in diabetics compared to non-diabetics (p = 0.004), and in males compared to females (p<0.001). This ratio was negatively correlated with glycated hemoglobin (r = −0.32, p<0.001) and triglyceride concentrations (r = −0.37, p<0.001), and positively correlated with HDL cholesterol concentrations (r = 0.32, p<0.001).

Conclusion: The relative abundance of the N-terminal arginine truncation of SAA1.1 is significantly decreased in diabetes and negatively correlates with measures of glycemic and lipid control.

ContributorsYassine, Hussein N. (Author) / Trenchevska, Olgica (Author) / He, Huijuan (Author) / Borges, Chad (Author) / Nedelkov, Dobrin (Author) / Mack, Wendy (Author) / Kono, Naoko (Author) / Koska, Juraj (Author) / Reaven, Peter D. (Author) / Nelson, Randall (Author) / Biodesign Institute (Contributor)
Created2015-01-21
128420-Thumbnail Image.png
Description

Quiescin sulfhydryl oxidase 1 (QSOX1) is a highly conserved disulfide bond-generating enzyme that is overexpressed in diverse tumor types. Its enzymatic activity promotes the growth and invasion of tumor cells and alters extracellular matrix composition. In a nude mouse-human tumor xenograft model, tumors containing shRNA for QSOX1 grew significantly more

Quiescin sulfhydryl oxidase 1 (QSOX1) is a highly conserved disulfide bond-generating enzyme that is overexpressed in diverse tumor types. Its enzymatic activity promotes the growth and invasion of tumor cells and alters extracellular matrix composition. In a nude mouse-human tumor xenograft model, tumors containing shRNA for QSOX1 grew significantly more slowly than controls, suggesting that QSOX1 supports a proliferative phenotype in vivo. High throughput screening experiments identified ebselen as an in vitro inhibitor of QSOX1 enzymatic activity. Ebselen treatment of pancreatic and renal cancer cell lines stalled tumor growth and inhibited invasion through Matrigel in vitro. Daily oral treatment with ebselen resulted in a 58% reduction in tumor growth in mice bearing human pancreatic tumor xenografts compared to controls. Mass spectrometric analysis of ebselen-treated QSOX1 mechanistically revealed that C165 and C237 of QSOX1 covalently bound to ebselen. This report details the anti-neoplastic properties of ebselen in pancreatic and renal cancer cell lines. The results here offer a “proof-of-principle” that enzymatic inhibition of QSOX1 may have clinical relevancy.

ContributorsHanavan, Paul (Author) / Borges, Chad (Author) / Katchman, Benjamin (Author) / Faigel, Douglas O. (Author) / Ho, Thai H. (Author) / Ma, Chen-Ting (Author) / Sergienko, Eduard A. (Author) / Meurice, Nathalie (Author) / Petit, Joachim L. (Author) / Lake, Douglas (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-06-01
129609-Thumbnail Image.png
Description

Significance: Modification of cysteine thiols dramatically affects protein function and stability. Hence, the abilities to quantify specific protein sulfhydryl groups within complex biological samples and map disulfide bond structures are crucial to gaining greater insights into how proteins operate in human health and disease. Recent Advances: Many different molecular probes

Significance: Modification of cysteine thiols dramatically affects protein function and stability. Hence, the abilities to quantify specific protein sulfhydryl groups within complex biological samples and map disulfide bond structures are crucial to gaining greater insights into how proteins operate in human health and disease. Recent Advances: Many different molecular probes are now commercially available to label and track cysteine residues at great sensitivity. Coupled with mass spectrometry, stable isotope-labeled sulfhydryl-specific reagents can provide previously unprecedented molecular insights into the dynamics of cysteine modification. Likewise, the combined application of modern mass spectrometers with improved sample preparation techniques and novel data mining algorithms is beginning to routinize the analysis of complex protein disulfide structures. Critical Issues: Proper application of these modern tools and techniques, however, still requires fundamental understanding of sulfhydryl chemistry as well as the assumptions that accompany sample preparation and underlie effective data interpretation. Future Directions: The continued development of tools, technical approaches, and corresponding data processing algorithms will, undoubtedly, facilitate site-specific protein sulfhydryl quantification and disulfide structure analysis from within complex biological mixtures with ever-improving accuracy and sensitivity. Fully routinizing disulfide structure analysis will require an equal but balanced focus on sample preparation and corresponding mass spectral dataset reproducibility.

ContributorsBorges, Chad (Author) / Sherma, Nisha (Author) / Biodesign Institute (Contributor)
Created2014-07-20
128017-Thumbnail Image.png
Description

The strong light-matter interaction and the valley selective optical selection rules make monolayer (ML) MoS2 an exciting 2D material for fundamental physics and optoelectronics applications. But, so far, optical transition linewidths even at low temperature are typically as large as a few tens of meV and contain homogeneous and inhomogeneous

The strong light-matter interaction and the valley selective optical selection rules make monolayer (ML) MoS2 an exciting 2D material for fundamental physics and optoelectronics applications. But, so far, optical transition linewidths even at low temperature are typically as large as a few tens of meV and contain homogeneous and inhomogeneous contributions. This prevented in-depth studies, in contrast to the better-characterized ML materials MoSe2 and WSe2. In this work, we show that encapsulation of ML MoS2 in hexagonal boron nitride can efficiently suppress the inhomogeneous contribution to the exciton linewidth, as we measure in photoluminescence and reflectivity a FWHM down to 2 meV at T = 4 K. Narrow optical transition linewidths are also observed in encapsulated WS2, WSe2, and MoSe2 MLs. This indicates that surface protection and substrate flatness are key ingredients for obtaining stable, high-quality samples. Among the new possibilities offered by the well-defined optical transitions, we measure the homogeneous broadening induced by the interaction with phonons in temperature-dependent experiments. We uncover new information on spin and valley physics and present the rotation of valley coherence in applied magnetic fields perpendicular to the ML.

ContributorsCadiz, F. (Author) / Courtade, E. (Author) / Robert, C. (Author) / Wang, G. (Author) / Shen, Yuxia (Author) / Cai, Hui (Author) / Taniguchi, T. (Author) / Watanabe, K. (Author) / Carrere, H. (Author) / Lagarde, D. (Author) / Manca, M. (Author) / Amand, T. (Author) / Renucci, P. (Author) / Tongay, Sefaattin (Author) / Marie, X. (Author) / Urbaszek, B. (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2017-05-18
128033-Thumbnail Image.png
Description

The valley degree of freedom in two-dimensional (2D) crystals recently emerged as a novel information carrier in addition to spin and charge. The intrinsic valley lifetime in 2D transition metal dichalcogenides (TMD) is expected to be markedly long due to the unique spin-valley locking behavior, where the intervalley scattering of

The valley degree of freedom in two-dimensional (2D) crystals recently emerged as a novel information carrier in addition to spin and charge. The intrinsic valley lifetime in 2D transition metal dichalcogenides (TMD) is expected to be markedly long due to the unique spin-valley locking behavior, where the intervalley scattering of the electron simultaneously requires a large momentum transfer to the opposite valley and a flip of the electron spin. However, the experimentally observed valley lifetime in 2D TMDs has been limited to tens of nanoseconds thus far. We report efficient generation of microsecond-long-lived valley polarization in WSe2/MoS2 heterostructures by exploiting the ultrafast charge transfer processes in the heterostructure that efficiently creates resident holes in the WSe2 layer. These valley-polarized holes exhibit near-unity valley polarization and ultralong valley lifetime: We observe a valley-polarized hole population lifetime of more than 1 μs and a valley depolarization lifetime (that is, intervalley scattering lifetime) of more than 40 μs at 10 K. The near-perfect generation of valley-polarized holes in TMD heterostructures, combined with ultralong valley lifetime, which is orders of magnitude longer than previous results, opens up new opportunities for novel valleytronics and spintronics applications.

ContributorsKim, Jonghwan (Author) / Jin, Chenhao (Author) / Chen, Bin (Author) / Cai, Hui (Author) / Zhao, Tao (Author) / Lee, Puiyee (Author) / Kahn, Salman (Author) / Watanabe, Kenji (Author) / Taniguchi, Takashi (Author) / Tongay, Sefaattin (Author) / Crommie, Michael F. (Author) / Wang, Feng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2017-07-26
128049-Thumbnail Image.png
Description

Modulated reflectance (contactless electroreflectance (CER), photoreflectance (PR), and piezoreflectance (PzR)) has been applied to study direct optical transitions in bulk MoS2, MoSe2, WS2, and WSe2. In order to interpret optical transitions observed in CER, PR, and PzR spectra, the electronic band structure for the four crystals has been calculated from

Modulated reflectance (contactless electroreflectance (CER), photoreflectance (PR), and piezoreflectance (PzR)) has been applied to study direct optical transitions in bulk MoS2, MoSe2, WS2, and WSe2. In order to interpret optical transitions observed in CER, PR, and PzR spectra, the electronic band structure for the four crystals has been calculated from the first principles within the density functional theory for various points of Brillouin zone including K and H points. It is clearly shown that the electronic band structure at H point of Brillouin zone is very symmetric and similar to the electronic band structure at K point, and therefore, direct optical transitions at H point should be expected in modulated reflectance spectra besides the direct optical transitions at the K point of Brillouin zone. This prediction is confirmed by experimental studies of the electronic band structure of MoS2, MoSe2, WS2, and WSe2 crystals by CER, PR, and PzR spectroscopy, i.e., techniques which are very sensitive to critical points of Brillouin zone. For the four crystals besides the A transition at K point, an AH transition at H point has been observed in CER, PR, and PzR spectra a few tens of meV above the A transition. The spectral difference between A and AH transition has been found to be in a very good agreement with theoretical predictions. The second transition at the H point of Brillouin zone (BH transition) overlaps spectrally with the B transition at K point because of small energy differences in the valence (conduction) band positions at H and K points. Therefore, an extra resonance which could be related to the BH transition is not resolved in modulated reflectance spectra at room temperature for the four crystals.

ContributorsKopaczek, J. (Author) / Polak, M. P. (Author) / Scharoch, P. (Author) / Wu, Kedi (Author) / Chen, Bin (Author) / Tongay, Sefaattin (Author) / Kudrawiec, R. (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-06-21
128571-Thumbnail Image.png
Description

Black phosphorus attracts enormous attention as a promising layered material for electronic, optoelectronic and thermoelectric applications. Here we report large anisotropy in in-plane thermal conductivity of single-crystal black phosphorus nanoribbons along the zigzag and armchair lattice directions at variable temperatures. Thermal conductivity measurements were carried out under the condition of

Black phosphorus attracts enormous attention as a promising layered material for electronic, optoelectronic and thermoelectric applications. Here we report large anisotropy in in-plane thermal conductivity of single-crystal black phosphorus nanoribbons along the zigzag and armchair lattice directions at variable temperatures. Thermal conductivity measurements were carried out under the condition of steady-state longitudinal heat flow using suspended-pad micro-devices. We discovered increasing thermal conductivity anisotropy, up to a factor of two, with temperatures above 100 K. A size effect in thermal conductivity was also observed in which thinner nanoribbons show lower thermal conductivity. Analysed with the relaxation time approximation model using phonon dispersions obtained based on density function perturbation theory, the high anisotropy is attributed mainly to direction-dependent phonon dispersion and partially to phonon–phonon scattering. Our results revealing the intrinsic, orientation-dependent thermal conductivity of black phosphorus are useful for designing devices, as well as understanding fundamental physical properties of layered materials.

ContributorsLee, Sangwook (Author) / Yang, Fan (Author) / Suh, Joonki (Author) / Yang, Sijie (Author) / Lee, Yeonbae (Author) / Li, Guo (Author) / Choe, Hwan Sung (Author) / Tuna, Aslihan (Author) / Chen, Yabin (Author) / Ko, Changhyun (Author) / Park, Joonsuk (Author) / Liu, Kai (Author) / Li, Jingbo (Author) / Hippalgaonkar, Kedar (Author) / Urban, Jeffrey J. (Author) / Tongay, Sefaattin (Author) / Wu, Junqiao (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-10-16