This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 31 - 40 of 378
Filtering by

Clear all filters

129347-Thumbnail Image.png
Description

Dynamical systems based on the minority game (MG) have been a paradigm for gaining significant insights into a variety of social and biological behaviors. Recently, a grouping phenomenon has been unveiled in MG systems of multiple resources (strategies) in which the strategies spontaneously break into an even number of groups,

Dynamical systems based on the minority game (MG) have been a paradigm for gaining significant insights into a variety of social and biological behaviors. Recently, a grouping phenomenon has been unveiled in MG systems of multiple resources (strategies) in which the strategies spontaneously break into an even number of groups, each exhibiting an identical oscillation pattern in the attendance of game players. Here we report our finding of spontaneous breakup of resources into three groups, each exhibiting period-three oscillations. An analysis is developed to understand the emergence of the striking phenomenon of triple grouping and period-three oscillations. In the presence of random disturbances, the triple-group/period-three state becomes transient, and we obtain explicit formula for the average transient lifetime using two methods of approximation. Our finding indicates that, period-three oscillation, regarded as one of the most fundamental behaviors in smooth nonlinear dynamical systems, can also occur in much more complex, evolutionary-game dynamical systems. Our result also provides a plausible insight for the occurrence of triple grouping observed, for example, in the U.S. housing market.

ContributorsDong, Jia-Qi (Author) / Huang, Zi-Gang (Author) / Huang, Liang (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-12-23
129359-Thumbnail Image.png
Description

To test reproducibility of a technical specification under development for potential-induced degradation (PID) and polarization, three crystalline silicon module types were distributed in five replicas each to five laboratories. Stress tests were performed in environmental chambers at 60 °C, 85% relative humidity, 96 h, and with module nameplate system voltage

To test reproducibility of a technical specification under development for potential-induced degradation (PID) and polarization, three crystalline silicon module types were distributed in five replicas each to five laboratories. Stress tests were performed in environmental chambers at 60 °C, 85% relative humidity, 96 h, and with module nameplate system voltage applied. Results from the modules tested indicate that the test protocol can discern susceptibility to PID according to the pass/fail criteria with acceptable consistency from lab to lab; however, areas for improvement are indicated to achieve better uniformity in temperature and humidity on the module surfaces. In the analysis of variance of the results, 6% of the variance was attributed to laboratory influence, 34% to module design, and 60% to variability in test results within a given design. Testing with the additional factor of illumination with ultraviolet light slowed or arrested the degradation. Testing at 25 °C with aluminum foil as the module ground was also examined for comparison. The foil, as tested, did not itself achieve consistent contact to ground at all surfaces, but methods to ensure more consistent grounding were found and proposed. The rates of degradation in each test are compared, and details affecting the rates are discussed.

ContributorsHacke, Peter (Author) / Terwilliger, Kent (Author) / Glick, Stephen (Author) / Tamizhmani, Govindasamy (Author) / Tatapudi, Sai Ravi Vasista (Author) / Stark, Cameron (Author) / Koch, Simon (Author) / Weber, Thomas (Author) / Berghold, Juliane (Author) / Hoffmann, Stephan (Author) / Koehl, Michael (Author) / Dietrich, Sascha (Author) / Ebert, Matthias (Author) / Mathiak, Gerhard (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-01-01
129361-Thumbnail Image.png
Description

Sensorimotor control theories propose that the central nervous system exploits expected sensory consequences generated by motor commands for movement planning, as well as online sensory feedback for comparison with expected sensory feedback for monitoring and correcting, if needed, ongoing motor output. In our study, we tested this theoretical framework by

Sensorimotor control theories propose that the central nervous system exploits expected sensory consequences generated by motor commands for movement planning, as well as online sensory feedback for comparison with expected sensory feedback for monitoring and correcting, if needed, ongoing motor output. In our study, we tested this theoretical framework by quantifying the functional role of expected vs. actual proprioceptive feedback for planning and regulation of gait in humans. We addressed this question by using a novel methodological approach to deliver fast perturbations of the walking surface stiffness, in conjunction with a virtual reality system that provided visual feedback of upcoming changes of surface stiffness. In the “predictable” experimental condition, we asked subjects to learn associating visual feedback of changes in floor stiffness (sand patch) during locomotion to quantify kinematic and kinetic changes in gait prior to and during the gait cycle. In the “unpredictable” experimental condition, we perturbed floor stiffness at unpredictable instances during the gait to characterize the gait-phase dependent strategies in recovering the locomotor cycle. For the “unpredictable” conditions, visual feedback of changes in floor stiffness was absent or inconsistent with tactile and proprioceptive feedback. The investigation of these perturbation-induced effects on contralateral leg kinematics revealed that visual feedback of upcoming changes in floor stiffness allows for both early (preparatory) and late (post-perturbation) changes in leg kinematics. However, when proprioceptive feedback is not available, the early responses in leg kinematics do not occur while the late responses are preserved although in a, slightly attenuated form. The methods proposed in this study and the preliminary results of the kinematic response of the contralateral leg open new directions for the investigation of the relative role of visual, tactile, and proprioceptive feedback on gait control, with potential implications for designing novel robot-assisted gait rehabilitation approaches.

ContributorsFrost, Ryan (Author) / Skidmore, Jeffrey (Author) / Santello, Marco (Author) / Artemiadis, Panagiotis (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-02-09
129362-Thumbnail Image.png
Description

The interplay between individual behaviors and epidemic dynamics in complex networks is a topic of recent interest. In particular, individuals can obtain different types of information about the disease and respond by altering their behaviors, and this can affect the spreading dynamics, possibly in a significant way. We propose a

The interplay between individual behaviors and epidemic dynamics in complex networks is a topic of recent interest. In particular, individuals can obtain different types of information about the disease and respond by altering their behaviors, and this can affect the spreading dynamics, possibly in a significant way. We propose a model where individuals' behavioral response is based on a generic type of local information, i.e., the number of neighbors that has been infected with the disease. Mathematically, the response can be characterized by a reduction in the transmission rate by a factor that depends on the number of infected neighbors. Utilizing the standard susceptible-infected-susceptible and susceptible-infected-recovery dynamical models for epidemic spreading, we derive a theoretical formula for the epidemic threshold and provide numerical verification. Our analysis lays on a solid quantitative footing the intuition that individual behavioral response can in general suppress epidemic spreading. Furthermore, we find that the hub nodes play the role of “double-edged sword” in that they can either suppress or promote outbreak, depending on their responses to the epidemic, providing additional support for the idea that these nodes are key to controlling epidemic spreading in complex networks.

ContributorsZhang, Haifeng (Author) / Xie, Jia-Rong (Author) / Tang, Ming (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-12-01
129364-Thumbnail Image.png
Description

The pore- and micro-structural features of a novel binding material based on the carbonation of waste metallic iron powder are reported in this paper. The binder contains metallic iron powder as the major ingredient, followed by additives containing silica and alumina to facilitate favorable reaction product formation. Compressive strengths sufficient

The pore- and micro-structural features of a novel binding material based on the carbonation of waste metallic iron powder are reported in this paper. The binder contains metallic iron powder as the major ingredient, followed by additives containing silica and alumina to facilitate favorable reaction product formation. Compressive strengths sufficient for a majority of concrete applications are attained. The material pore structure is investigated primarily through mercury intrusion porosimetry whereas electron microscopy is used for microstructural characterization. Reduction in the overall porosity and the average pore size with an increase in carbonation duration from 1 day to 4 days is noticed. The pore structure features are used in predictive models for gas and moisture transport (water vapor diffusivity and moisture permeability) through the porous medium which dictates its long-term durability when used in structural applications. Comparisons of the pore structure with those of a Portland cement paste are also provided. The morphology of the reaction products in the iron-based binder, and the distribution of constituent elements in the microstructure are also reported.

ContributorsDas, Sumanta (Author) / Stone, David (Author) / Convey, Diana (Author) / Neithalath, Narayanan (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-12-01
129372-Thumbnail Image.png
Description

Understanding the dynamics of human movements is key to issues of significant current interest such as behavioral prediction, recommendation, and control of epidemic spreading. We collect and analyze big data sets of human movements in both cyberspace (through browsing of websites) and physical space (through mobile towers) and find a

Understanding the dynamics of human movements is key to issues of significant current interest such as behavioral prediction, recommendation, and control of epidemic spreading. We collect and analyze big data sets of human movements in both cyberspace (through browsing of websites) and physical space (through mobile towers) and find a superlinear scaling relation between the mean frequency of visit〈f〉and its fluctuation σ : σ ∼〈f⟩β with β ≈ 1.2. The probability distribution of the visiting frequency is found to be a stretched exponential function. We develop a model incorporating two essential ingredients, preferential return and exploration, and show that these are necessary for generating the scaling relation extracted from real data. A striking finding is that human movements in cyberspace and physical space are strongly correlated, indicating a distinctive behavioral identifying characteristic and implying that the behaviors in one space can be used to predict those in the other.

ContributorsZhao, Zhidan (Author) / Huang, Zi-Gang (Author) / Huang, Liang (Author) / Liu, Huan (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-11-12
129381-Thumbnail Image.png
Description

The focus of this investigation is on a first assessment of the predictive capabilities of nonlinear geometric reduced order models for the prediction of the large displacement and stress fields of panels with localized geometric defects, the case of a notch serving to exemplify the analysis. It is first demonstrated

The focus of this investigation is on a first assessment of the predictive capabilities of nonlinear geometric reduced order models for the prediction of the large displacement and stress fields of panels with localized geometric defects, the case of a notch serving to exemplify the analysis. It is first demonstrated that the reduced order model of the notched panel does indeed provide a close match of the displacement and stress fields obtained from full finite element analyses for moderately large static and dynamic responses (peak displacement of 2 and 4 thicknesses). As might be expected, the reduced order model of the virgin panel would also yield a close approximation of the displacement field but not of the stress one. These observations then lead to two “enrichment” techniques seeking to superpose the notch effects on the virgin panel stress field so that a reduced order model of the latter can be used. A very good prediction of the full finite element stresses, for both static and dynamic analyses, is achieved with both enrichments.

ContributorsPerez, Ricardo (Author) / Wang, X. Q. (Author) / Mignolet, Marc (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-12-02
129383-Thumbnail Image.png
Description

Reserve requirements promote reliability by ensuring resources are available to rebalance the power system following random disturbances. However, reliability is not guaranteed when dispatch is limited by transmission constraints. In this work, we propose a modified form of reserve requirement that identifies response sets for distinct contingency scenarios. The approach

Reserve requirements promote reliability by ensuring resources are available to rebalance the power system following random disturbances. However, reliability is not guaranteed when dispatch is limited by transmission constraints. In this work, we propose a modified form of reserve requirement that identifies response sets for distinct contingency scenarios. The approach disqualifies reserve from counting towards a particular scenario if transmission constraints are likely to render that reserve undeliverable. A decomposition algorithm for security-constrained unit commitment dynamically updates the response sets to address changing conditions. Testing on the RTS 96 test case demonstrates the approach applied in tandem with existing reserve policies to avoid situations where reserve is not deliverable due to transmission constraints. Operational implications of the proposed method are discussed.

ContributorsLyon, Joshua (Author) / Zhang, Muhong (Author) / Hedman, Kory (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-01-01
129392-Thumbnail Image.png
Description

In this paper, we present an approach to designing decentralized robot control policies that mimic certain microscopic and macroscopic behaviors of ants performing collective transport tasks. In prior work, we used a stochastic hybrid system model to characterize the observed team dynamics of ant group retrieval of a rigid load.

In this paper, we present an approach to designing decentralized robot control policies that mimic certain microscopic and macroscopic behaviors of ants performing collective transport tasks. In prior work, we used a stochastic hybrid system model to characterize the observed team dynamics of ant group retrieval of a rigid load. We have also used macroscopic population dynamic models to design enzyme-inspired stochastic control policies that allocate a robotic swarm around multiple boundaries in a way that is robust to environmental variations. Here, we build on this prior work to synthesize stochastic robot attachment–detachment policies for tasks in which a robotic swarm must achieve non-uniform spatial distributions around multiple loads and transport them at a constant velocity. Three methods are presented for designing robot control policies that replicate the steady-state distributions, transient dynamics, and fluxes between states that we have observed in ant populations during group retrieval. The equilibrium population matching method can be used to achieve a desired transport team composition as quickly as possible; the transient matching method can control the transient population dynamics of the team while driving it to the desired composition; and the rate matching method regulates the rates at which robots join and leave a load during transport. We validate our model predictions in an agent-based simulation, verify that each controller design method produces successful transport of a load at a regulated velocity, and compare the advantages and disadvantages of each method.

ContributorsWilson, Sean (Author) / Pavlic, Theodore (Author) / Kumar, Ganesh (Author) / Buffin, Aurelie (Author) / Pratt, Stephen (Author) / Berman, Spring (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-12-01
129236-Thumbnail Image.png
Description

Perchloroethylene (PCE) is a highly utilized solvent in the dry cleaning industry because of its cleaning effectiveness and relatively low cost to consumers. According to the 2006 U.S. Census, approximately 28,000 dry cleaning operations used PCE as their principal cleaning agent. Widespread use of PCE is problematic because of its

Perchloroethylene (PCE) is a highly utilized solvent in the dry cleaning industry because of its cleaning effectiveness and relatively low cost to consumers. According to the 2006 U.S. Census, approximately 28,000 dry cleaning operations used PCE as their principal cleaning agent. Widespread use of PCE is problematic because of its adverse impacts on human health and environmental quality. As PCE use is curtailed, effective alternatives must be analyzed for their toxicity and impacts to human health and the environment. Potential alternatives to PCE in dry cleaning include dipropylene glycol n-butyl ether (DPnB) and dipropylene glycol tert-butyl ether (DPtB), both promising to pose a relatively smaller risk. To evaluate these two alternatives to PCE, we established and scored performance criteria, including chemical toxicity, employee and customer exposure levels, impacts on the general population, costs of each system, and cleaning efficacy. The scores received for PCE were 5, 5, 3, 5, 3, and 3, respectively, and DPnB and DPtB scored 3, 1, 2, 2, 4, and 4, respectively. An aggregate sum of the performance criteria yielded a favorably low score of “16” for both DPnB and DPtB compared to “24” for PCE. We conclude that DPnB and DPtB are preferable dry cleaning agents, exhibiting reduced human toxicity and a lesser adverse impact on human health and the environment compared to PCE, with comparable capital investments, and moderately higher annual operating costs.

ContributorsHesari, Nikou (Author) / Francis, Chelsea (Author) / Halden, Rolf (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-04-03