This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 11 - 20 of 36
Filtering by

Clear all filters

Description

Photosynthesis, a process catalysed by plants, algae and cyanobacteria converts sunlight to energy thus sustaining all higher life on Earth. Two large membrane protein complexes, photosystem I and II (PSI and PSII), act in series to catalyse the light-driven reactions in photosynthesis. PSII catalyses the light-driven water splitting process, which

Photosynthesis, a process catalysed by plants, algae and cyanobacteria converts sunlight to energy thus sustaining all higher life on Earth. Two large membrane protein complexes, photosystem I and II (PSI and PSII), act in series to catalyse the light-driven reactions in photosynthesis. PSII catalyses the light-driven water splitting process, which maintains the Earth’s oxygenic atmosphere. In this process, the oxygen-evolving complex (OEC) of PSII cycles through five states, S0 to S4, in which four electrons are sequentially extracted from the OEC in four light-driven charge-separation events. Here we describe time resolved experiments on PSII nano/microcrystals from Thermosynechococcus elongatus performed with the recently developed technique of serial femtosecond crystallography. Structures have been determined from PSII in the dark S1 state and after double laser excitation (putative S3 state) at 5 and 5.5 Å resolution, respectively. The results provide evidence that PSII undergoes significant conformational changes at the electron acceptor side and at the Mn4CaO5 core of the OEC. These include an elongation of the metal cluster, accompanied by changes in the protein environment, which could allow for binding of the second substrate water molecule between the more distant protruding Mn (referred to as the ‘dangler’ Mn) and the Mn3CaOx cubane in the S2 to S3 transition, as predicted by spectroscopic and computational studies. This work shows the great potential for time-resolved serial femtosecond crystallography for investigation of catalytic processes in biomolecules.

ContributorsKupitz, Christopher (Author) / Basu, Shibom (Author) / Grotjohann, Ingo (Author) / Fromme, Raimund (Author) / Zatsepin, Nadia (Author) / Rendek, Kimberly (Author) / Hunter, Mark (Author) / Shoeman, Robert L. (Author) / White, Thomas A. (Author) / Wang, Dingjie (Author) / James, Daniel (Author) / Yang, Jay-How (Author) / Cobb, Danielle (Author) / Reeder, Brenda (Author) / Sierra, Raymond G. (Author) / Liu, Haiguang (Author) / Barty, Anton (Author) / Aquila, Andrew L. (Author) / Deponte, Daniel (Author) / Kirian, Richard (Author) / Bari, Sadia (Author) / Bergkamp, Jesse (Author) / Beyerlein, Kenneth R. (Author) / Bogan, Michael J. (Author) / Caleman, Carl (Author) / Chao, Tzu-Chiao (Author) / Conrad, Chelsie (Author) / Davis, Katherine M. (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2014-09-11
129374-Thumbnail Image.png
Description

Formally zerovalent (κ3-phosphine)Fe(η4-COT) complexes supported by either Triphos (PhP(CH2CH2PPh2)2) or Triphos* (H3CC(CH2PPh2)3) have been prepared following chelate addition to (COT)2Fe (COT = 1,3,5,7-cyclooctatetraene) and by reduction of the respective dibromide complexes in the presence of excess COT. The solid-state structure of each complex was determined by single-crystal X-ray diffraction, and

Formally zerovalent (κ3-phosphine)Fe(η4-COT) complexes supported by either Triphos (PhP(CH2CH2PPh2)2) or Triphos* (H3CC(CH2PPh2)3) have been prepared following chelate addition to (COT)2Fe (COT = 1,3,5,7-cyclooctatetraene) and by reduction of the respective dibromide complexes in the presence of excess COT. The solid-state structure of each complex was determined by single-crystal X-ray diffraction, and close inspection of the metrical parameters revealed significant COT ligand reduction, independent of the coordination geometry about iron. While the neutral and dianionic forms of the redox-active COT ligand have historically received a great deal of attention, a dearth of information regarding the often-evoked radical monoanion form of this ligand prompted the full electronic structure investigation of these complexes using a range of techniques. Comparison of the Mössbauer spectroscopic data collected for both (Triphos)Fe(η4-COT) complexes with data obtained for two appropriate reference compounds indicated that they possess a low-spin Fe(I) center that is antiferromagnetically coupled to a COT radical monoanion. Further evidence for this electronic structure determination by EPR spectroscopy and cyclic voltammetry is presented. A comparison of the solid-state metrical parameters determined in this study to those of related first-row transition-metal complexes has provided insight into the electronic structure analysis of related organometallic complexes.

ContributorsMukhopadhyay, Tufan (Author) / Flores, Marco (Author) / Feller, Russell K. (Author) / Scott, Brian L. (Author) / Taylor, R. Dean (Author) / Paz-Pasternak, Moshe (Author) / Henson, Neil J. (Author) / Rein, Francisca N. (Author) / Smythe, Nathan C. (Author) / Trovitch, Ryan (Author) / Gordon, John C. (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2014-12-22
129270-Thumbnail Image.png
Description

In proteins, functional divergence involves mutations that modify structure and dynamics. Here we provide experimental evidence for an evolutionary mechanism driven solely by long-range dynamic motions without significant backbone adjustments, catalytic group rearrangements, or changes in subunit assembly. Crystallographic structures were determined for several reconstructed ancestral proteins belonging to a

In proteins, functional divergence involves mutations that modify structure and dynamics. Here we provide experimental evidence for an evolutionary mechanism driven solely by long-range dynamic motions without significant backbone adjustments, catalytic group rearrangements, or changes in subunit assembly. Crystallographic structures were determined for several reconstructed ancestral proteins belonging to a GFP class frequently employed in superresolution microscopy. Their chain flexibility was analyzed using molecular dynamics and perturbation response scanning. The green-to-red photoconvertible phenotype appears to have arisen from a common green ancestor by migration of a knob-like anchoring region away from the active site diagonally across the β barrel fold. The allosterically coupled mutational sites provide active site conformational mobility via epistasis. We propose that light-induced chromophore twisting is enhanced in a reverse-protonated subpopulation, activating internal acid-base chemistry and backbone cleavage to enlarge the chromophore. Dynamics-driven hinge migration may represent a more general platform for the evolution of novel enzyme activities.

ContributorsKim, Hanseong (Author) / Zou, Taisong (Author) / Modi, Chintan (Author) / Dorner, Katerina (Author) / Grunkemeyer, Timothy (Author) / Chen, Liqing (Author) / Fromme, Raimund (Author) / Matz, Mikhail V. (Author) / Ozkan, Sefika (Author) / Wachter, Rebekka (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2015-01-06
129433-Thumbnail Image.png
Description

Electrophoretic exclusion, a technique that differentiates species in bulk solution near a channel entrance, has been demonstrated on benchtop and microdevice designs. In these systems, separation occurs when the electrophoretic velocity of one species is greater than the opposing hydrodynamic flow, while the velocity of the other species is less

Electrophoretic exclusion, a technique that differentiates species in bulk solution near a channel entrance, has been demonstrated on benchtop and microdevice designs. In these systems, separation occurs when the electrophoretic velocity of one species is greater than the opposing hydrodynamic flow, while the velocity of the other species is less than that flow. Although exclusion has been demonstrated in multiple systems for a range of analytes, a theoretical assessment of resolution has not been addressed. To compare the results of these calculations to traditional techniques, the performance is expressed in terms of smallest difference in electrophoretic mobilities that can be completely separated (R = 1.5). The calculations indicate that closest resolvable species (Δμc) differ by approximately 10-13 m2/Vs and peak capacity (nc) is 1000. Published experimental data were compared to these calculated results.

ContributorsKenyon, Stacy (Author) / Keebaugh, Michael (Author) / Hayes, Mark (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2014-09-01
129215-Thumbnail Image.png
Description

Molecule-plasmon interactions have been shown to have a definite role in light propagation through optical microcavities due to strong coupling between molecular excitations and surface plasmons. This coupling can lead to macroscopic extended coherent states exhibiting increment in temporal and spatial coherency and a large Rabi splitting. Here, we demonstrate

Molecule-plasmon interactions have been shown to have a definite role in light propagation through optical microcavities due to strong coupling between molecular excitations and surface plasmons. This coupling can lead to macroscopic extended coherent states exhibiting increment in temporal and spatial coherency and a large Rabi splitting. Here, we demonstrate spatial modulation of light transmission through a single microcavity patterned on a freestanding Au film, strongly coupled to one of the most efficient energy transfer photosynthetic proteins in nature, photosystem I. Here we observe a clear correlation between the appearance of spatial modulation of light and molecular photon absorption, accompanied by a 13-fold enhancement in light transmission and the emergence of a distinct electromagnetic standing wave pattern in the cavity. This study provides the path for engineering various types of bio-photonic devices based on the vast diversity of biological molecules in nature.

ContributorsCarmeli, Itai (Author) / Cohen, Moshik (Author) / Heifler, Omri (Author) / Lilach, Yigal (Author) / Zalevsky, Zeev (Author) / Mujica, Vladimiro (Author) / Richter, Shachar (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2015-06-01
Description

The SH3 domain of the c-Src tyrosine kinase (c-Src-SH3) aggregates to form intertwined dimers and amyloid fibrils at mild acid pHs. In this work, we show that a single mutation of residue Gln128 of this SH3 domain has a significant effect on: (i) its thermal stability; and (ii) its propensity

The SH3 domain of the c-Src tyrosine kinase (c-Src-SH3) aggregates to form intertwined dimers and amyloid fibrils at mild acid pHs. In this work, we show that a single mutation of residue Gln128 of this SH3 domain has a significant effect on: (i) its thermal stability; and (ii) its propensity to form amyloid fibrils. The Gln128Glu mutant forms amyloid fibrils at neutral pH but not at mild acid pH, while Gln128Lys and Gln128Arg mutants do not form these aggregates under any of the conditions assayed. We have also solved the crystallographic structures of the wild-type (WT) and Gln128Glu, Gln128Lys and Gln128Arg mutants from crystals obtained at different pHs. At pH 5.0, crystals belong to the hexagonal space group P6522 and the asymmetric unit is formed by one chain of the protomer of the c-Src-SH3 domain in an open conformation. At pH 7.0, crystals belong to the orthorhombic space group P212121, with two molecules at the asymmetric unit showing the characteristic fold of the SH3 domain. Analysis of these crystallographic structures shows that the residue at position 128 is connected to Glu106 at the diverging β-turn through a cluster of water molecules. Changes in this hydrogen-bond network lead to the displacement of the c-Src-SH3 distal loop, resulting also in conformational changes of Leu100 that might be related to the binding of proline rich motifs. Our findings show that electrostatic interactions and solvation of residues close to the folding nucleation site of the c-Src-SH3 domain might play an important role during the folding reaction and the amyloid fibril formation.

Created2014-12-09
128928-Thumbnail Image.png
Description

Biophotovoltaic devices employ photosynthetic organisms at the anode of a microbial fuel cell to generate electrical power. Although a range of cyanobacteria and algae have been shown to generate photocurrent in devices of a multitude of architectures, mechanistic understanding of extracellular electron transfer by phototrophs remains minimal. Here we describe

Biophotovoltaic devices employ photosynthetic organisms at the anode of a microbial fuel cell to generate electrical power. Although a range of cyanobacteria and algae have been shown to generate photocurrent in devices of a multitude of architectures, mechanistic understanding of extracellular electron transfer by phototrophs remains minimal. Here we describe a mediatorless bioelectrochemical device to measure the electrogenic output of a planktonically grown cyanobacterium, Synechocystis sp. PCC6803. Light dependent production of current is measured, and its magnitude is shown to scale with microbial cell concentration and light intensity. Bioelectrochemical characterization of a Synechocystis mutant lacking Photosystem II demonstrates conclusively that production of the majority of photocurrent requires a functional water splitting aparatus and electrons are likely ultimately derived from water. This shows the potential of the device to rapidly and quantitatively characterize photocurrent production by genetically modified strains, an approach that can be used in future studies to delineate the mechanisms of cyanobacterial extracellular electron transport.

ContributorsCereda, Angelo (Author) / Hitchcock, Andrew (Author) / Symes, Mark D. (Author) / Cronin, Leroy (Author) / Bibby, Thomas S. (Author) / Jones, Anne (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2014-03-17
Description

A new class of highly active solid base catalysts for biodiesel production was developed by creating hierarchically porous aluminosilicate geopolymer with affordable precursors and modifying the material with varying amounts of calcium. For the catalysts containing ≥8 wt% Ca, almost 100% conversion has been achieved in one hour under refluxing

A new class of highly active solid base catalysts for biodiesel production was developed by creating hierarchically porous aluminosilicate geopolymer with affordable precursors and modifying the material with varying amounts of calcium. For the catalysts containing ≥8 wt% Ca, almost 100% conversion has been achieved in one hour under refluxing conditions with methanol solvent, and the high catalytic activity was preserved for multiple regeneration cycles. Temperature-programed desorption studies of CO2 indicate that the new base catalyst has three different types of base sites on its surface whose strengths are intermediate between MgO and CaO. The detailed powder X-ray diffraction (PXRD) and X-ray photoelectron spectroscopic (XPS) studies show that the calcium ions were incorporated into the aluminosilicate network of the geopolymer structure, resulting in a very strong ionicity of the calcium and thus the strong basicity of the catalysts. Little presence of CaCO3 in the catalysts was indicated from the thermogravimetric analysis (TGA), XPS and Fourier transform infrared spectroscopy (FT-IR) studies, which may contribute to the observed high catalytic activity and regenerability. The results indicate that new geopolymer-based catalysts can be developed for cost-effective biodiesel production.

ContributorsSharma, Sudhanshu (Author) / Medpelli, Dinesh (Author) / Chen, Shaojiang (Author) / Seo, Dong-Kyun (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2015-07-27
129146-Thumbnail Image.png
Description

Electrophoretic and dielectrophoretic approaches to separations can provide unique capabilities. In the past, capillary and microchip-based approaches to electrophoresis have demonstrated extremely high-resolution separations. More recently, dielectrophoretic systems have shown excellent results for the separation of bioparticles. Here we demonstrate resolution of a difficult pair of targets: gentamicin resistant and

Electrophoretic and dielectrophoretic approaches to separations can provide unique capabilities. In the past, capillary and microchip-based approaches to electrophoresis have demonstrated extremely high-resolution separations. More recently, dielectrophoretic systems have shown excellent results for the separation of bioparticles. Here we demonstrate resolution of a difficult pair of targets: gentamicin resistant and susceptible strains of Staphylococcus epidermidis. This separation has significant potential implications for healthcare. This establishes a foundation for biophysical separations as a direct diagnostic tool, potentially improving nearly every figure of merit for diagnostics and antibiotic stewardship. The separations are performed on a modified gradient insulator-based dielectrophoresis (g-iDEP) system and demonstrate that the presence of antibiotic resistance enzymes (or secondary effects) produces a sufficient degree of electrophysical difference to allow separation. The differentiating factor is the ratio of electrophoretic to dielectrophoretic mobilities. This factor is 4.6 ± 0.6 × 109 V m−2 for the resistant strain, versus 9.2 ± 0.4 × 109 V m−2 for the susceptible strain. Using g-iDEP separation, this difference produces clear and easily discerned differentiation of the two strains.

ContributorsJones, Paul (Author) / Hilton, Shannon (Author) / Davis, Paige (Author) / McLemore, Ryan (Author) / McLaren, Alex (Author) / Hayes, Mark (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2015-06-09
129147-Thumbnail Image.png
Description

To achieve improved sensitivity in cardiac biomarker detection, a batch incubation magnetic microbead immunoassay was developed and tested on three separate human protein targets: myoglobin, heart-type fatty acid binding protein, and cardiac troponin I. A sandwich immunoassay was performed in a simple micro-centrifuge tube allowing full dispersal of the solid

To achieve improved sensitivity in cardiac biomarker detection, a batch incubation magnetic microbead immunoassay was developed and tested on three separate human protein targets: myoglobin, heart-type fatty acid binding protein, and cardiac troponin I. A sandwich immunoassay was performed in a simple micro-centrifuge tube allowing full dispersal of the solid capture surface during incubations. Following magnetic bead capture and wash steps, samples were analyzed in the presence of a manipulated magnetic field utilizing a modified microscope slide and fluorescent inverted microscope to collect video data files. Analysis of the video data allowed for the quantitation of myoglobin, heart-type fatty acid binding protein and cardiac troponin I to levels of 360 aM, 67 fM, and 42 fM, respectively. Compared to the previous detection limit of 50 pM for myoglobin, this offers a five-fold improvement in sensitivity. This improvement in sensitivity and incorporation of additional markers, along with the small sample volumes required, suggest the potential of this platform for incorporation as a detection method in a total sample analysis device enabling multiplexed detection for the analysis of clinical samples.

ContributorsWoolley, Christine (Author) / Hayes, Mark (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2015-08-20