This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 121
Filtering by

Clear all filters

129551-Thumbnail Image.png
Description

National and state organizations have developed policies calling upon afterschool programs (ASPs, 3–6 pm) to serve a fruit or vegetable (FV) each day for snack, while eliminating foods and beverages high in added-sugars, and to ensure children accumulate a minimum of 30 min/d of moderate-to-vigorous physical activity (MVPA). Few efficacious

National and state organizations have developed policies calling upon afterschool programs (ASPs, 3–6 pm) to serve a fruit or vegetable (FV) each day for snack, while eliminating foods and beverages high in added-sugars, and to ensure children accumulate a minimum of 30 min/d of moderate-to-vigorous physical activity (MVPA). Few efficacious and cost-effective strategies exist to assist ASP providers in achieving these important public health goals. This paper reports on the design and conceptual framework of Making Healthy Eating and Physical Activity (HEPA) Policy Practice in ASPs, a 3-year group randomized controlled trial testing the effectiveness of strategies designed to improve snacks served and increase MVPA in children attending community-based ASPs. Twenty ASPs, serving over 1800 children (6–12 years) will be enrolled and match-paired based on enrollment size, average daily min/d MVPA, and days/week FV served, with ASPs randomized after baseline data collection to immediate intervention or a 1-year delayed group. The framework employed, STEPs (Strategies To Enhance Practice), focuses on intentional programming of HEPA in each ASPs' daily schedule, and includes a grocery store partnership to reduce price barriers to purchasing FV, professional development training to promote physical activity to develop core physical activity competencies, as well as ongoing technical support/assistance. Primary outcome measures include children's accelerometry-derived MVPA and time spend sedentary while attending an ASP, direct observation of staff HEPA promoting and inhibiting behaviors, types of snacks served, and child consumption of snacks, as well as, cost of snacks via receipts and detailed accounting of intervention delivery costs to estimate cost-effectiveness.

ContributorsBeets, Michael W. (Author) / Weaver, R. Glenn (Author) / Turner-McGrievy, Gabrielle (Author) / Huberty, Jennifer (Author) / Ward, Dianne S. (Author) / Freedman, Darcy A. (Author) / Saunders, Ruth (Author) / Pate, Russell R. (Author) / Beighle, Aaron (Author) / Hutto, Brent (Author) / Moore, Justin B. (Author) / College of Health Solutions (Contributor)
Created2014-07-01
129563-Thumbnail Image.png
Description

Humans are able to modulate digit forces as a function of position despite changes in digit placement that might occur from trial to trial or when changing grip type for object manipulation. Although this phenomenon is likely to rely on sensing the position of the digits relative to each other

Humans are able to modulate digit forces as a function of position despite changes in digit placement that might occur from trial to trial or when changing grip type for object manipulation. Although this phenomenon is likely to rely on sensing the position of the digits relative to each other and the object, the underlying mechanisms remain unclear. To address this question, we asked subjects (n = 30) to match perceived vertical distance between the center of pressure (CoP) of the thumb and index finger pads (dy) of the right hand (“reference” hand) using the same hand (“test” hand). The digits of reference hand were passively placed collinearly (dy = 0 mm). Subjects were then asked to exert different combinations of normal and tangential digit forces (Fn and Ftan, respectively) using the reference hand and then match the memorized dy using the test hand. The reference hand exerted Ftan of thumb and index finger in either same or opposite direction. We hypothesized that, when the tangential forces of the digits are produced in opposite directions, matching error (1) would be biased toward the directions of the tangential forces; and (2) would be greater when the remembered relative contact points are matched with negligible digit force production. For the test hand, digit forces were either negligible (0.5–1 N, 0 ± 0.25 N; Experiment 1) or the same as those exerted by the reference hand (Experiment 2).Matching error was biased towards the direction of digit tangential forces: thumb CoP was placed higher than the index finger CoP when thumb and index finger Ftan were directed upward and downward, respectively, and vice versa (p < 0.001). However, matching error was not dependent on whether the reference and test hand exerted similar or different forces. We propose that the expected sensory consequence of motor commands for tangential forces in opposite directions overrides estimation of fingertip position through haptic sensory feedback.

ContributorsShibata, Daisuke (Author) / Kappers, Astrid M. L. (Author) / Santello, Marco (Author) / College of Health Solutions (Contributor)
Created2014-08-04
129352-Thumbnail Image.png
Description

Over the last two decades, our knowledge concerning intracellular events that regulate integrin’s affinity to their soluble ligands has significantly improved. However, the mechanism of adhesion-induced integrin clustering and development of focal complexes, which could further mature to form focal adhesions, still remains under-investigated. Here we present a structural model

Over the last two decades, our knowledge concerning intracellular events that regulate integrin’s affinity to their soluble ligands has significantly improved. However, the mechanism of adhesion-induced integrin clustering and development of focal complexes, which could further mature to form focal adhesions, still remains under-investigated. Here we present a structural model of tandem IgC2 domains of skelemin in complex with the cytoplasmic tails of integrin α[subscript IIb]β[subscript 3]. The model of tertiary assembly is generated based upon NMR data and illuminates a potential link between the essential cell adhesion receptors and myosin filaments. This connection may serve as a basis for generating the mechanical forces necessary for cell migration and remodeling.

ContributorsGorbatyuk, Vitaliy (Author) / Nguyen, Kheim (Author) / Podolnikova, Nataly (Author) / Deshmukh, Lalit (Author) / Lin, Xiaochen (Author) / Ugarova, Tatiana (Author) / Vinogradova, Olga (Author) / College of Health Solutions (Contributor)
Created2014-11-04
Description

Emerging and re-emerging infectious diseases of zoonotic origin like highly pathogenic avian influenza pose a significant threat to human and animal health due to their elevated transmissibility. Identifying the drivers of such viruses is challenging, and estimation of spatial diffusion is complicated by the fact that the variability of viral

Emerging and re-emerging infectious diseases of zoonotic origin like highly pathogenic avian influenza pose a significant threat to human and animal health due to their elevated transmissibility. Identifying the drivers of such viruses is challenging, and estimation of spatial diffusion is complicated by the fact that the variability of viral spread from locations could be caused by a complex array of unknown factors. Several techniques exist to help identify these drivers, including bioinformatics, phylogeography, and spatial epidemiology, but these methods are generally evaluated separately and do not consider the complementary nature of each other. Here, we studied an approach that integrates these techniques and identifies the most important drivers of viral spread by focusing on H5N1 influenza A virus in Egypt because of its recent emergence as an epicenter for the disease. We used a Bayesian phylogeographic generalized linear model (GLM) to reconstruct spatiotemporal patterns of viral diffusion while simultaneously assessing the impact of factors contributing to transmission. We also calculated the cross-species transmission rates among hosts in order to identify the species driving transmission. The densities of both human and avian species were supported contributors, along with latitude, longitude, elevation, and several meteorological variables. Also supported was the presence of a genetic motif found near the hemagglutinin cleavage site. Various genetic, geographic, demographic, and environmental predictors each play a role in H1N1 diffusion. Further development and expansion of phylogeographic GLMs such as this will enable health agencies to identify variables that can curb virus diffusion and reduce morbidity and mortality.

ContributorsMagee, Daniel (Author) / Beard, Rachel (Author) / Suchard, Marc A. (Author) / Lemey, Philippe (Author) / Scotch, Matthew (Author) / College of Health Solutions (Contributor)
Created2015-01-01
Description

The purpose of this study was two-fold: 1) demonstrate a technique that can be used to directly estimate the inertial properties of a below-knee prosthesis, and 2) contrast the effects of the proposed technique and that of using intact limb inertial properties on joint kinetic estimates during walking in unilateral,

The purpose of this study was two-fold: 1) demonstrate a technique that can be used to directly estimate the inertial properties of a below-knee prosthesis, and 2) contrast the effects of the proposed technique and that of using intact limb inertial properties on joint kinetic estimates during walking in unilateral, transtibial amputees. An oscillation and reaction board system was validated and shown to be reliable when measuring inertial properties of known geometrical solids. When direct measurements of inertial properties of the prosthesis were used in inverse dynamics modeling of the lower extremity compared with inertial estimates based on an intact shank and foot, joint kinetics at the hip and knee were significantly lower during the swing phase of walking. Differences in joint kinetics during stance, however, were smaller than those observed during swing. Therefore, researchers focusing on the swing phase of walking should consider the impact of prosthesis inertia property estimates on study outcomes. For stance, either one of the two inertial models investigated in our study would likely lead to similar outcomes with an inverse dynamics assessment.

ContributorsSmith, Jeremy D. (Author) / Ferris, Abbie E. (Author) / Heise, Gary D. (Author) / Hinrichs, Richard (Author) / Martin, Philip E. (Author) / College of Health Solutions (Contributor)
Created2014-05-01
129284-Thumbnail Image.png
Description

High-density electroencephalography was used to evaluate cortical activity during speech comprehension via a sentence verification task. Twenty-four participants assigned true or false to sentences produced with 3 noise-vocoded channel levels (1-unintelligible, 6-decipherable, 16-intelligible), during simultaneous EEG recording. Participant data were sorted into higher- (HP) and lower-performing (LP) groups. The identification

High-density electroencephalography was used to evaluate cortical activity during speech comprehension via a sentence verification task. Twenty-four participants assigned true or false to sentences produced with 3 noise-vocoded channel levels (1-unintelligible, 6-decipherable, 16-intelligible), during simultaneous EEG recording. Participant data were sorted into higher- (HP) and lower-performing (LP) groups. The identification of a late-event related potential for LP listeners in the intelligible condition and in all listeners when challenged with a 6-Ch signal supports the notion that this induced potential may be related to either processing degraded speech, or degraded processing of intelligible speech. Different cortical locations are identified as neural generators responsible for this activity; HP listeners are engaging motor aspects of their language system, utilizing an acoustic–phonetic based strategy to help resolve the sentence, while LP listeners do not. This study presents evidence for neurophysiological indices associated with more or less successful speech comprehension performance across listening conditions.

ContributorsUtianski, Rene (Author) / Caviness, John N. (Author) / Liss, Julie (Author) / College of Health Solutions (Contributor)
Created2015-01-01
129454-Thumbnail Image.png
Description

Previous studies suggest that bilinguals have certain executive function advantages over monolinguals. However, few studies have examined specific working memory (WM) differences between monolinguals and bilinguals using complex span tasks. In the current study, 52 bilingual and 53 monolingual speakers were administered simple and complex WM span tasks, including a

Previous studies suggest that bilinguals have certain executive function advantages over monolinguals. However, few studies have examined specific working memory (WM) differences between monolinguals and bilinguals using complex span tasks. In the current study, 52 bilingual and 53 monolingual speakers were administered simple and complex WM span tasks, including a backward digit-span task, standard operation span tasks and a non-verbal symmetry span task. WM performance was a strong predictor of performance on other WM tasks, whereas bilingual status was not. Thus, the present study did not find evidence of a bilingual advantage in WM capacity.

ContributorsRatiu, Ileana (Author) / Azuma, Tamiko (Author) / College of Health Solutions (Contributor)
Created2015-01-02
129223-Thumbnail Image.png
Description

Background: Opioid peptides, including dynorphin A, besides their analgesic action in the nervous system, exert a broad spectrum of effects on cells of the immune system, including leukocyte migration, degranulation and cytokine production. The mechanisms whereby opioid peptides induce leukocyte responses are poorly understood. The integrin Mac-1 (alpha(M)beta(2), CD11b/CD18) is

Background: Opioid peptides, including dynorphin A, besides their analgesic action in the nervous system, exert a broad spectrum of effects on cells of the immune system, including leukocyte migration, degranulation and cytokine production. The mechanisms whereby opioid peptides induce leukocyte responses are poorly understood. The integrin Mac-1 (alpha(M)beta(2), CD11b/CD18) is a multiligand receptor which mediates numerous reactions of neutrophils and monocyte/macrophages during the immune-inflammatory response. Our recent elucidation of the ligand recognition specificity of Mac-1 suggested that dynorphin A and dynorphin B contain Mac-1 recognition motifs and can potentially interact with this receptor.

Results: In this study, we have synthesized the peptide library spanning the sequence of dynorphin AB, containing dynorphin A and B, and showed that the peptides bound recombinant alpha I-M-domain, the ligand binding region of Mac-1. In addition, immobilized dynorphins A and B supported adhesion of the Mac-1-expressing cells. In binding to dynorphins A and B, Mac-1 cooperated with cell surface proteoglycans since both anti-Mac-1 function-blocking reagents and heparin were required to block adhesion. Further focusing on dynorphin A, we showed that its interaction with the alpha I-M-domain was activation independent as both the alpha 7 helix-truncated (active conformation) and helix-extended (nonactive conformation) alpha I-M-domains efficiently bound dynorphin A. Dynorphin A induced a potent migratory response of Mac-1-expressing, but not Mac-1-deficient leukocytes, and enhanced Mac-1-mediated phagocytosis of latex beads by murine IC-21 macrophages.

Conclusions: Together, the results identify dynorphins A and B as novel ligands for Mac-1 and suggest a role for the Dynorphin A-Mac-1 interactions in the induction of nonopiod receptor-dependent effects in leukocytes.

ContributorsPodolnikova, Nataly (Author) / Brothwell, Julie A. (Author) / Ugarova, Tatiana (Author) / College of Health Solutions (Contributor)
Created2015-06-03
128782-Thumbnail Image.png
Description

We sought to evaluate the reproducibility of a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based approach to measure the stable-isotope enrichment of in vivo-labeled muscle ATP synthase β subunit (β-F1-ATPase), a protein most directly involved in ATP production, and whose abundance is reduced under a variety of circumstances. Muscle was obtained from

We sought to evaluate the reproducibility of a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based approach to measure the stable-isotope enrichment of in vivo-labeled muscle ATP synthase β subunit (β-F1-ATPase), a protein most directly involved in ATP production, and whose abundance is reduced under a variety of circumstances. Muscle was obtained from a rat infused with stable-isotope-labeled leucine. The muscle was homogenized, β-F1-ATPase immunoprecipitated, and the protein was resolved using 1D-SDS PAGE. Following trypsin digestion of the isolated protein, the resultant peptide mixtures were subjected to analysis by HPLC-ESI-MS/MS, which resulted in the detection of multiple β-F1-ATPase peptides. There were three β-F1-ATPase unique peptides with a leucine residue in the amino acid sequence, and which were detected with high intensity relative to other peptides and assigned with >95% probability to β-F1-ATPase. These peptides were specifically targeted for fragmentation to access their stable-isotope enrichment based on MS/MS peak areas calculated from extracted ion chromatographs for selected labeled and unlabeled fragment ions. Results showed best linearity (R[superscript 2] = 0.99) in the detection of MS/MS peak areas for both labeled and unlabeled fragment ions, over a wide range of amounts of injected protein, specifically for the β-F1-ATPase[subscript 134-143] peptide. Measured stable-isotope enrichment was highly reproducible for the β-F1-ATPase[subscript 134-143] peptide (CV = 2.9%). Further, using mixtures of synthetic labeled and unlabeled peptides we determined that there is an excellent linear relationship (R[superscript 2] = 0.99) between measured and predicted enrichment for percent enrichments ranging between 0.009% and 8.185% for the β-F1-ATPase[subscript 134-143] peptide. The described approach provides a reliable approach to measure the stable-isotope enrichment of in-vivo-labeled muscle β-F1-ATPase based on the determination of the enrichment of the β-F1-ATPase[subscript 134-143] peptide.

ContributorsEverman, Sarah (Author) / Yi, Zhengping (Author) / Langlais, Paul (Author) / Mandarino, Lawrence (Author) / Luo, Moulun (Author) / Roberts, Christine (Author) / Katsanos, Christos (Author) / College of Health Solutions (Contributor)
Created2011-10-12
128873-Thumbnail Image.png
Description

Background: Healthy individuals on the lower end of the insulin sensitivity spectrum also have a reduced gene expression response to exercise for specific genes. The goal of this study was to determine the relationship between insulin sensitivity and exercise-induced gene expression in an unbiased, global manner.

Methods and Findings: Euglycemic clamps were used

Background: Healthy individuals on the lower end of the insulin sensitivity spectrum also have a reduced gene expression response to exercise for specific genes. The goal of this study was to determine the relationship between insulin sensitivity and exercise-induced gene expression in an unbiased, global manner.

Methods and Findings: Euglycemic clamps were used to measure insulin sensitivity and muscle biopsies were done at rest and 30 minutes after a single acute exercise bout in 14 healthy participants. Changes in mRNA expression were assessed using microarrays, and miRNA analysis was performed in a subset of 6 of the participants using sequencing techniques. Following exercise, 215 mRNAs were changed at the probe level (Bonferroni-corrected P<0.00000115). Pathway and Gene Ontology analysis showed enrichment in MAP kinase signaling, transcriptional regulation and DNA binding. Changes in several transcription factor mRNAs were correlated with insulin sensitivity, including MYC, r=0.71; SNF1LK, r=0.69; and ATF3, r= 0.61 (5 corrected for false discovery rate). Enrichment in the 5’-UTRs of exercise-responsive genes suggested regulation by common transcription factors, especially EGR1. miRNA species of interest that changed after exercise included miR-378, which is located in an intron of the PPARGC1B gene.

Conclusions: These results indicate that transcription factor gene expression responses to exercise depend highly on insulin sensitivity in healthy people. The overall pattern suggests a coordinated cycle by which exercise and insulin sensitivity regulate gene expression in muscle.

ContributorsMcLean, Carrie (Author) / Mielke, Clinton (Author) / Cordova, Jeanine (Author) / Langlais, Paul R. (Author) / Bowen, Benjamin (Author) / Miranda, Danielle (Author) / Coletta, Dawn (Author) / Mandarino, Lawrence (Author) / College of Health Solutions (Contributor)
Created2015-05-18