This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 27
Filtering by

Clear all filters

129428-Thumbnail Image.png
Description

Quantifying the interactions of bacteria with external ligands is fundamental to the understanding of pathogenesis, antibiotic resistance, immune evasion, and mechanism of antimicrobial action. Due to inherent cell-to-cell heterogeneity in a microbial population, each bacterium interacts differently with its environment. This large variability is washed out in bulk assays, and

Quantifying the interactions of bacteria with external ligands is fundamental to the understanding of pathogenesis, antibiotic resistance, immune evasion, and mechanism of antimicrobial action. Due to inherent cell-to-cell heterogeneity in a microbial population, each bacterium interacts differently with its environment. This large variability is washed out in bulk assays, and there is a need of techniques that can quantify interactions of bacteria with ligands at the single bacterium level. In this work, we present a label-free and real-time plasmonic imaging technique to measure the binding kinetics of ligand interactions with single bacteria, and perform statistical analysis of the heterogeneity. Using the technique, we have studied interactions of antibodies with single Escherichia coli O157:H7 cells and demonstrated a capability of determining the binding kinetic constants of single live bacteria with ligands, and quantify heterogeneity in a microbial population.

ContributorsSyal, Karan (Author) / Wang, Wei (Author) / Shan, Xiaonan (Author) / Wang, Shaopeng (Author) / Chen, Hong-Yuan (Author) / Tao, Nongjian (Author) / Biodesign Institute (Contributor)
Created2015-01-15
Description

Background:
Ketogenic diets are high fat and low carbohydrate or very low carbohydrate diets, which render high production of ketones upon consumption known as nutritional ketosis (NK). Ketosis is also produced during fasting periods, which is known as fasting ketosis (FK). Recently, the combinations of NK and FK, as well as

Background:
Ketogenic diets are high fat and low carbohydrate or very low carbohydrate diets, which render high production of ketones upon consumption known as nutritional ketosis (NK). Ketosis is also produced during fasting periods, which is known as fasting ketosis (FK). Recently, the combinations of NK and FK, as well as NK alone, have been used as resources for weight loss management and treatment of epilepsy.

Methods:
A crossover study design was applied to 11 healthy individuals, who maintained moderately sedentary lifestyle, and consumed three types of diet randomly assigned over a three-week period. All participants completed the diets in a randomized and counterbalanced fashion. Each weekly diet protocol included three phases: Phase 1 - A mixed diet with ratio of fat: (carbohydrate + protein) by mass of 0.18 or the equivalence of 29% energy from fat from Day 1 to Day 5. Phase 2- A mixed or a high-fat diet with ratio of fat: (carbohydrate + protein) by mass of approximately 0.18, 1.63, or 3.80 on Day 6 or the equivalence of 29%, 79%, or 90% energy from fat, respectively. Phase 3 - A fasting diet with no calorie intake on Day 7. Caloric intake from diets on Day 1 to Day 6 was equal to each individual’s energy expenditure. On Day 7, ketone buildup from FK was measured.

Results:
A statistically significant effect of Phase 2 (Day 6) diet was found on FK of Day 7, as indicated by repeated analysis of variance (ANOVA), F(2,20) = 6.73, p < 0.0058. Using a Fisher LDS pair-wise comparison, higher significant levels of acetone buildup were found for diets with 79% fat content and 90% fat content vs. 29% fat content (with p = 0.00159**, and 0.04435**, respectively), with no significant difference between diets with 79% fat content and 90% fat content. In addition, independent of the diet, a significantly higher ketone buildup capability of subjects with higher resting energy expenditure (R[superscript 2] = 0.92), and lower body mass index (R[superscript 2] = 0.71) was observed during FK.

ContributorsPrabhakar, Amlendu (Author) / Quach, Ashley (Author) / Zhang, Haojiong (Author) / Terrera, Mirna (Author) / Jackemeyer, David (Author) / Xian, Xiaojun (Author) / Tsow, Tsing (Author) / Tao, Nongjian (Author) / Forzani, Erica (Author) / Biodesign Institute (Contributor)
Created2015-04-22
128250-Thumbnail Image.png
Description

Many drugs are effective in the early stage of treatment, but patients develop drug resistance after a certain period of treatment, causing failure of the therapy. An important example is Herceptin, a popular monoclonal antibody drug for breast cancer by specifically targeting human epidermal growth factor receptor 2 (Her2). Here

Many drugs are effective in the early stage of treatment, but patients develop drug resistance after a certain period of treatment, causing failure of the therapy. An important example is Herceptin, a popular monoclonal antibody drug for breast cancer by specifically targeting human epidermal growth factor receptor 2 (Her2). Here we demonstrate a quantitative binding kinetics analysis of drug-target interactions to investigate the molecular scale origin of drug resistance. Using a surface plasmon resonance imaging, we measured the in situ Herceptin-Her2 binding kinetics in single intact cancer cells for the first time, and observed significantly weakened Herceptin-Her2 interactions in Herceptin-resistant cells, compared to those in Herceptin-sensitive cells. We further showed that the steric hindrance of Mucin-4, a membrane protein, was responsible for the altered drug-receptor binding. This effect of a third molecule on drug-receptor interactions cannot be studied using traditional purified protein methods, demonstrating the importance of the present intact cell-based binding kinetics analysis.

ContributorsWang, Wei (Author) / Yin, Linliang (Author) / Gonzalez-Malerva, Laura (Author) / Wang, Shaopeng (Author) / Yu, Xiaobo (Author) / Eaton, Seron (Author) / Zhang, Shengtao (Author) / Chen, Hong-Yuan (Author) / LaBaer, Joshua (Author) / Tao, Nongjian (Author) / Biodesign Institute (Contributor)
Created2014-10-14
127933-Thumbnail Image.png
Description

To date, little research has been performed regarding the planning and management of “small” projects – those projects typically differentiated from “large” projects due to having lower costs. In 2013, The Construction Industry Institute (CII) set out to develop a front end planning tool that will provide practitioners with a

To date, little research has been performed regarding the planning and management of “small” projects – those projects typically differentiated from “large” projects due to having lower costs. In 2013, The Construction Industry Institute (CII) set out to develop a front end planning tool that will provide practitioners with a standardized process for planning small projects in the industrial sector. The research team determined that data should be sought from industry regarding small industrial projects to ensure applicability, effectiveness and validity of the new tool. The team developed and administered a survey to determine (1) the prevalence of small projects, (2) the planning processes currently in use for small projects, and (3) current metrics used by industry to differentiate between small and large projects. The survey data showed that small projects make up a majority of projects completed in the industrial sector, planning of these projects varies greatly across the industry, and the metrics posed in the survey were mostly not appropriate for use in differentiating between small and large projects. This study contributes to knowledge through adding to the limited research surrounding small projects, and suggesting future research regarding using measures of project complexity to differentiate between small and large projects.

ContributorsCollins, Wesley (Author) / Parrish, Kristen (Author) / Gibson, G (Author) / Ira A. Fulton School of Engineering (Contributor)
Created2017-08-24
127934-Thumbnail Image.png
Description

For the past three decades, the Saudi construction industry (SCI) has exhibited poor performance. Many research efforts have tried to identify the problem and the potential causes but there have been few publications identifying ways to mitigate the problem and describing testing to validate the proposed solution. This paper examines

For the past three decades, the Saudi construction industry (SCI) has exhibited poor performance. Many research efforts have tried to identify the problem and the potential causes but there have been few publications identifying ways to mitigate the problem and describing testing to validate the proposed solution. This paper examines the research and development (R&D) approach in the SCI. A literature research was performed identifying the impact that R&D has had on the SCI. A questionnaire was also created for surveying industry professionals and researchers. The results show evidence that the SCI practice and the academic research work exist in separate silos. This study recommends a change of mindset in both the public and private sector on their views on R&D since cooperation is required to create collaboration between the two sectors and improve the competitiveness of the country's economy.

ContributorsAlhammadi, Yasir (Author) / Algahtany, Mohammed (Author) / Kashiwagi, Dean (Author) / Sullivan, Kenneth (Author) / Kashiwagi, Jacob (Author) / Ira A. Fulton School of Engineering (Contributor)
Created2016-05-20
127935-Thumbnail Image.png
Description

The principles of a new project management model have been tested for the past 20 years. This project management model utilizes expertise instead of the traditional management, direction, and control (MDC). This new project management model is a leadership-based model instead of a management model. The practice of the new

The principles of a new project management model have been tested for the past 20 years. This project management model utilizes expertise instead of the traditional management, direction, and control (MDC). This new project management model is a leadership-based model instead of a management model. The practice of the new model requires a change in paradigm and project management structure. Some of the practices of this new paradigm include minimizing the flow of information and communications to and from the project manager [including meetings, emails and documents], eliminating technical communications, reducing client management, direction, and control of the vendor, and the hiring of vendors or personnel to do specific tasks. A vendors is hired only after they have clearly shown that they know what they are doing by showing past performance on similar projects, that they clearly understand how to create transparency to minimize risk that they do not control, and that they can clearly outline their project plan using a detailed milestone schedule including time, cost, and tasks all communicated in the language of metrics.

ContributorsRivera, Alfredo (Author) / Kashiwagi, Dean (Author) / Ira A. Fulton School of Engineering (Contributor)
Created2016-05-20
127936-Thumbnail Image.png
Description

Load associated fatigue cracking is one of the major distress types occurring in flexible pavements. Flexural bending beam fatigue laboratory test has been used for several decades and is considered an integral part of the Superpave advanced characterization procedure. One of the most significant solutions to sustain the fatigue life

Load associated fatigue cracking is one of the major distress types occurring in flexible pavements. Flexural bending beam fatigue laboratory test has been used for several decades and is considered an integral part of the Superpave advanced characterization procedure. One of the most significant solutions to sustain the fatigue life for an asphaltic mixture is to add sustainable materials such as rubber or polymers to the asphalt mixture. A laboratory testing program was performed on three gap-graded mixtures: unmodified, Asphalt Rubber (AR) and polymer-modified. Strain controlled fatigue tests were conducted according to the AASHTO T321 procedure. The results from the beam fatigue tests indicated that the AR and polymer-modified gap graded mixtures would have much longer fatigue lives compared to the reference (unmodified) mixture. In addition, a mechanistic analysis using 3D-Move software coupled with a cost-effectiveness analysis study based on the fatigue performance on the three mixtures were performed. Overall, the analysis showed that the AR and polymer-modified asphalt mixtures exhibited significantly higher cost-effectiveness compared to unmodified HMA mixture. Although AR and polymer-modification increases the cost of the material, the analysis showed that they are more cost effective than the unmodified mixture.

ContributorsSouliman, Mena I. (Author) / Mamlouk, Michael (Author) / Eifert, Annie (Author) / Ira A. Fulton School of Engineering (Contributor)
Created2016-05-20
127961-Thumbnail Image.png
Description

As gesture interfaces become more main-stream, it is increasingly important to investigate the behavioral characteristics of these interactions – particularly in three-dimensional (3D) space. In this study, Fitts’ method was extended to such input technologies, and the applicability of Fitts’ law to gesture-based interactions was examined. The experiment included three

As gesture interfaces become more main-stream, it is increasingly important to investigate the behavioral characteristics of these interactions – particularly in three-dimensional (3D) space. In this study, Fitts’ method was extended to such input technologies, and the applicability of Fitts’ law to gesture-based interactions was examined. The experiment included three gesture-based input devices that utilize different techniques to capture user movement, and compared them to conventional input technologies like touchscreen and mouse. Participants completed a target-acquisition test and were instructed to move a cursor from a home location to a spherical target as quickly and accurately as possible. Three distances and three target sizes were tested six times in a randomized order for all input devices. A total of 81 participants completed all tasks. Movement time, error rate, and throughput were calculated for each input technology. Results showed that the mean movement time was highly correlated with the target's index of difficulty for all devices, providing evidence that Fitts’ law can be extended and applied to gesture-based devices. Throughputs were found to be significantly lower for the gesture-based devices compared to mouse and touchscreen, and as the index of difficulty increased, the movement time increased significantly more for these gesture technologies. Error counts were statistically higher for all gesture-based input technologies compared to mouse. In addition, error counts for all inputs were highly correlated with target width, but little impact was shown by movement distance. Overall, the findings suggest that gesture-based devices can be characterized by Fitts’ law in a similar fashion to conventional 1D or 2D devices.

ContributorsBurno, Rachael A. (Author) / Wu, Bing (Author) / Doherty, Rina (Author) / Colett, Hannah (Author) / Elnaggar, Rania (Author) / Ira A. Fulton School of Engineering (Contributor)
Created2015-10-23
127882-Thumbnail Image.png
Description

The estimation of energy demand (by power plants) has traditionally relied on historical energy use data for the region(s) that a plant produces for. Regression analysis, artificial neural network and Bayesian theory are the most common approaches for analysing these data. Such data and techniques do not generate reliable results.

The estimation of energy demand (by power plants) has traditionally relied on historical energy use data for the region(s) that a plant produces for. Regression analysis, artificial neural network and Bayesian theory are the most common approaches for analysing these data. Such data and techniques do not generate reliable results. Consequently, excess energy has to be generated to prevent blackout; causes for energy surge are not easily determined; and potential energy use reduction from energy efficiency solutions is usually not translated into actual energy use reduction. The paper highlights the weaknesses of traditional techniques, and lays out a framework to improve the prediction of energy demand by combining energy use models of equipment, physical systems and buildings, with the proposed data mining algorithms for reverse engineering. The research team first analyses data samples from large complex energy data, and then, presents a set of computationally efficient data mining algorithms for reverse engineering. In order to develop a structural system model for reverse engineering, two focus groups are developed that has direct relation with cause and effect variables. The research findings of this paper includes testing out different sets of reverse engineering algorithms, understand their output patterns and modify algorithms to elevate accuracy of the outputs.

ContributorsNaganathan, Hariharan (Author) / Chong, Oswald (Author) / Ye, Long (Author) / Ira A. Fulton School of Engineering (Contributor)
Created2015-12-09
127884-Thumbnail Image.png
Description

A typical building construction process runs through three main consecutive phases: design, construction and operation. Currently, architects and engineers both engage in the creation of environmental designs that adequately reflect high performance through sustainability and energy efficiency in new buildings. Occupants of buildings have also recently demonstrated a dramatic increase

A typical building construction process runs through three main consecutive phases: design, construction and operation. Currently, architects and engineers both engage in the creation of environmental designs that adequately reflect high performance through sustainability and energy efficiency in new buildings. Occupants of buildings have also recently demonstrated a dramatic increase in awareness regarding building operation, energy usage, and indoor air quality. The process of building construction is chronologically located between both the design and the operation phases. However, this phase has not yet been addressed in either understanding contractor behavior or developing innovative sustainable techniques. These two vital aspects have the potential to levy a dramatic impact on enhancing building performance and operational costs.

Repeatedly causing apprehension to the construction industry is a question that posits, “Why is there a gap/delta/inconsistency between the designed EUI, Energy Use Intensity, and the operational EUI”? Building occupants shall not be the only party that bears blame for the delta in energy. It is true, nonetheless, that occupants are part of the reason, but the contractor – as well as the entire construction phase - also remain prime suspects worth investigating. In the present time, research is predominantly focused on occupants (post-occupancy) and designers to educate and control the gap between designed and operational EUI. This research has succeeded in the identification of the construction phase, in conjunction with contractor behavior, as another main factor for initiating this energy gap. Therefore, not only is the coupling of sustainable strategies to the construction drivers crucial to attaining a sustainable project, but also it is integral to analyzing contractor behavior within each of the construction phases that play a vital role in successfully serving sustainability. Various techniques and approaches will assist contractors in amending their method statements to ensure a sustainable project.

This research correlates an existing project to the two proposed sustainable concepts: 1) Identify cost-saving strategies that may have been implemented or avoided during the construction process, and 2) Evaluate the impacts of implementing these strategies on overall performance. The adopted contexts are to partially foster sustainable architecture concepts to the Contractor process, and then proceed to analyze its cost implication on overall project performance. Results of the validation of this approach verify that when contractors embrace a sustainable construction process the overall project will yield various financial savings. A mixed-use project was utilized to validate these concepts, which indicated three outcomes: firstly, a 25% decrease in manpower for tiling while maintaining the same productivity, thus reflecting a saving of $3,500; next, increasing the productivity of concrete activity, which would shorten the duration of the construction by 45 days and reflect a saving of $1.5 million, and last of all, reducing the overhead costs of labor camps by efficiently orienting temporary shelters, which reveals a reduction in cooling and heating that returned a saving of approximately $10,000. This research develops a comprehensive evidence-based study that addresses the above-mentioned gap in the construction phase, which targets to yield a multi-dimensional tool that will allow: 1) integrating critical thinking and decision-making approaches regarding contractor behavior, and 2) adopting innovative sustainable construction methods that reflect reduction in operating costs.

ContributorsElzomor, Mohamed (Author) / Parrish, Kristen (Author) / Ira A. Fulton School of Engineering (Contributor)
Created2016-05-20