This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 11 - 15 of 15
Filtering by

Clear all filters

129402-Thumbnail Image.png
Description

A variety of geologic landforms and features are observed within quadrangle Av-13 Tuccia in the southern hemisphere of Vesta. The quadrangle covers parts of the highland Vestalia Terra as well as the floors of the large Rheasilvia and Veneneia impact basins, which results in a substantial elevation difference of more

A variety of geologic landforms and features are observed within quadrangle Av-13 Tuccia in the southern hemisphere of Vesta. The quadrangle covers parts of the highland Vestalia Terra as well as the floors of the large Rheasilvia and Veneneia impact basins, which results in a substantial elevation difference of more than 40 km between the northern and the southern portions of the quadrangle. Measurements of crater size–frequency distributions within and surrounding the Rheasilvia basin indicate that gravity-driven mass wasting in the interior of the basin has been important, and that the basin has a more ancient formation age than would be expected from the crater density on the basin floor alone. Subsequent to its formation, Rheasilvia was superimposed by several mid-sized impact craters. The most prominent craters are Tuccia, Eusebia, Vibidia, Galeria, and Antonia, whose geology and formation ages are investigated in detail in this work. These impact structures provide a variety of morphologies indicating different sorts of subsequent impact-related or gravity-driven mass wasting processes. Understanding the geologic history of the relatively young craters in the Rheasilvia basin is important in order to understand the even more degraded craters in other regions of Vesta.

ContributorsKneissl, T. (Author) / Schmedemann, N. (Author) / Reddy, V. (Author) / Williams, David (Author) / Walter, S. H. G. (Author) / Neesemann, A. (Author) / Michael, G. G. (Author) / Jaumann, R. (Author) / Krohn, K. (Author) / Preusker, F. (Author) / Roatsch, T. (Author) / Le Corre, L. (Author) / Nathues, A. (Author) / Hoffmann, M. (Author) / Schaefer, M. (Author) / Buczkowski, D. (Author) / Garry, W. B. (Author) / Yingst, R. A. (Author) / Mest, S. C. (Author) / Russell, C. T. (Author) / Raymond, C. A. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-12-01
129403-Thumbnail Image.png
Description

The Quadrangles Av-11 and Av-12 on Vesta are located at the northern rim of the giant Rheasilvia south polar impact basin. The primary geologic units in Av-11 and Av-12 include material from the Rheasilvia impact basin formation, smooth material and different types of impact crater structures (such as bimodal craters,

The Quadrangles Av-11 and Av-12 on Vesta are located at the northern rim of the giant Rheasilvia south polar impact basin. The primary geologic units in Av-11 and Av-12 include material from the Rheasilvia impact basin formation, smooth material and different types of impact crater structures (such as bimodal craters, dark and bright crater ray material and dark ejecta material). Av-11 and Av-12 exhibit almost the full range of mass wasting features observed on Vesta, such as slump blocks, spur-and-gully morphologies and landslides within craters. Processes of collapse, slope instability and seismically triggered events force material to slump down crater walls or scarps and produce landslides or rotational slump blocks. The spur-and-gully morphology that is known to form on Mars is also observed on Vesta; however, on Vesta this morphology formed under dry conditions.

ContributorsKrohn, K. (Author) / Jaumann, R. (Author) / Otto, K. (Author) / Hoogenboom, T. (Author) / Wagner, R. (Author) / Buczkowski, D. L. (Author) / Garry, B. (Author) / Williams, David (Author) / Yingst, R. A. (Author) / Scully, J. (Author) / De Sanctis, M. C. (Author) / Kneissl, T. (Author) / Schmedemann, N. (Author) / Kersten, E. (Author) / Stephan, K. (Author) / Matz, K-D. (Author) / Pieters, C. M. (Author) / Preusker, F. (Author) / Roatsch, T. (Author) / Schenk, P. (Author) / Russell, C. T. (Author) / Raymond, C. A. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-12-01
129404-Thumbnail Image.png
Description

Oppia Quadrangle Av-10 (288–360°E, ±22°) is a junction of key geologic features that preserve a rough history of Asteroid (4) Vesta and serves as a case study of using geologic mapping to define a relative geologic timescale. Clear filter images, stereo-derived topography, slope maps, and multispectral color-ratio images from the

Oppia Quadrangle Av-10 (288–360°E, ±22°) is a junction of key geologic features that preserve a rough history of Asteroid (4) Vesta and serves as a case study of using geologic mapping to define a relative geologic timescale. Clear filter images, stereo-derived topography, slope maps, and multispectral color-ratio images from the Framing Camera on NASA’s Dawn spacecraft served as basemaps to create a geologic map and investigate the spatial and temporal relationships of the local stratigraphy. Geologic mapping reveals the oldest map unit within Av-10 is the cratered highlands terrain which possibly represents original crustal material on Vesta that was then excavated by one or more impacts to form the basin Feralia Planitia. Saturnalia Fossae and Divalia Fossae ridge and trough terrains intersect the wall of Feralia Planitia indicating that this impact basin is older than both the Veneneia and Rheasilvia impact structures, representing Pre-Veneneian crustal material. Two of the youngest geologic features in Av-10 are Lepida (∼45 km diameter) and Oppia (∼40 km diameter) impact craters that formed on the northern and southern wall of Feralia Planitia and each cross-cuts a trough terrain. The ejecta blanket of Oppia is mapped as ‘dark mantle’ material because it appears dark orange in the Framing Camera ‘Clementine-type’ color-ratio image and has a diffuse, gradational contact distributed to the south across the rim of Rheasilvia. Mapping of surface material that appears light orange in color in the Framing Camera ‘Clementine-type’ color-ratio image as ‘light mantle material’ supports previous interpretations of an impact ejecta origin. Some light mantle deposits are easily traced to nearby source craters, but other deposits may represent distal ejecta deposits (emplaced >5 crater radii away) in a microgravity environment.

ContributorsGarry, W. Brent (Author) / Williams, David (Author) / Yingst, R. Aileen (Author) / Mest, Scott C. (Author) / Buczkowski, Debra L. (Author) / Tosi, Federico (Author) / Schaefer, Michael (Author) / Le Corre, Lucille (Author) / Reddy, Vishnu (Author) / Jaumann, Ralf (Author) / Pieters, Carle M. (Author) / Russell, Christopher T. (Author) / Raymond, Carol A. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-12-01
129405-Thumbnail Image.png
Description

The Dawn Framing Camera (FC) has imaged the northern hemisphere of the Asteroid (4) Vesta at high spatial resolution and coverage. This study represents the first investigation of the overall geology of the northern hemisphere (22–90°N, quadrangles Av-1, 2, 3, 4 and 5) using these unique Dawn mission observations. We

The Dawn Framing Camera (FC) has imaged the northern hemisphere of the Asteroid (4) Vesta at high spatial resolution and coverage. This study represents the first investigation of the overall geology of the northern hemisphere (22–90°N, quadrangles Av-1, 2, 3, 4 and 5) using these unique Dawn mission observations. We have compiled a morphologic map and performed crater size–frequency distribution (CSFD) measurements to date the geologic units. The hemisphere is characterized by a heavily cratered surface with a few highly subdued basins up to ∼200 km in diameter. The most widespread unit is a plateau (cratered highland unit), similar to, although of lower elevation than the equatorial Vestalia Terra plateau. Large-scale troughs and ridges have regionally affected the surface. Between ∼180°E and ∼270°E, these tectonic features are well developed and related to the south pole Veneneia impact (Saturnalia Fossae trough unit), elsewhere on the hemisphere they are rare and subdued (Saturnalia Fossae cratered unit). In these pre-Rheasilvia units we observed an unexpectedly high frequency of impact craters up to ∼10 km in diameter, whose formation could in part be related to the Rheasilvia basin-forming event. The Rheasilvia impact has potentially affected the northern hemisphere also with S–N small-scale lineations, but without covering it with an ejecta blanket. Post-Rheasilvia impact craters are small (<60 km in diameter) and show a wide range of degradation states due to impact gardening and mass wasting processes. Where fresh, they display an ejecta blanket, bright rays and slope movements on walls. In places, crater rims have dark material ejecta and some crater floors are covered by ponded material interpreted as impact melt.

ContributorsRuesch, Ottaviano (Author) / Hiesinger, Harald (Author) / Blewett, David T. (Author) / Williams, David (Author) / Buczkowski, Debra (Author) / Scully, Jennifer (Author) / Yingst, R. Aileen (Author) / Roatsch, Thomas (Author) / Preusker, Frank (Author) / Jaumann, Ralf (Author) / Russell, Christopher T. (Author) / Raymond, Carol A. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-12-01
128527-Thumbnail Image.png
Description

Asteroids provide fundamental clues to the formation and evolution of planetesimals. Collisional models based on the depletion of the primordial main belt of asteroids predict 10–15 craters >400 km should have formed on Ceres, the largest object between Mars and Jupiter, over the last 4.55 Gyr. Likewise, an extrapolation from the asteroid

Asteroids provide fundamental clues to the formation and evolution of planetesimals. Collisional models based on the depletion of the primordial main belt of asteroids predict 10–15 craters >400 km should have formed on Ceres, the largest object between Mars and Jupiter, over the last 4.55 Gyr. Likewise, an extrapolation from the asteroid Vesta would require at least 6–7 such basins. However, Ceres’ surface appears devoid of impact craters >∼280 km. Here, we show a significant depletion of cerean craters down to 100–150 km in diameter. The overall scarcity of recognizable large craters is incompatible with collisional models, even in the case of a late implantation of Ceres in the main belt, a possibility raised by the presence of ammoniated phyllosilicates. Our results indicate that a significant population of large craters has been obliterated, implying that long-wavelength topography viscously relaxed or that Ceres experienced protracted widespread resurfacing.

ContributorsMarchi, S. (Author) / Ermakov, A. I. (Author) / Raymond, C. A. (Author) / Fu, R. R. (Author) / O'Brien, D. P. (Author) / Bland, M. T. (Author) / Ammannito, E. (Author) / De Sanctis, M. C. (Author) / Bowling, T. (Author) / Schenk, P. (Author) / Scully, J. E. C. (Author) / Buczkowski, D. L. (Author) / Williams, David (Author) / Hiesinger, H. (Author) / Russell, C. T. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-07-26