This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 41 - 50 of 63
Filtering by

Clear all filters

128615-Thumbnail Image.png
Description

The botanical, Astragalus membranaceus, is a therapeutic in traditional Chinese medicine. Limited literature exists on the overall in vivo effects of A. membranaceus on the human body. This study evaluates the physiological responses to A. membranaceus by measuring leukocyte, platelet, and cytokine responses as well as body temperature and blood

The botanical, Astragalus membranaceus, is a therapeutic in traditional Chinese medicine. Limited literature exists on the overall in vivo effects of A. membranaceus on the human body. This study evaluates the physiological responses to A. membranaceus by measuring leukocyte, platelet, and cytokine responses as well as body temperature and blood pressure in healthy individuals after the in vivo administration of A. membranaceus. A dose-dependent increase in monocytes, neutrophils, and lymphocytes was measured 8–12 hours after administration and an increase in the number of circulating platelets was seen as early as 4 hours. A dynamic change in the levels of circulating cytokines was observed, especially in interferon-γ and tumor necrosis factor-α, IL-13, IL-6, and soluble IL-2R. Subjective symptoms reported by participants were similar to those typically experienced in viral type immune responses and included fatigue, malaise, and headache. Systolic and diastolic blood pressure were reduced within 4 hours after administration, while body temperature mildly increased within 8 hours after administration. In general, all responses returned to baseline values by 24 hours. Collectively, these results support the role of A. membranaceus in priming for a potential immune response as well as its effect on blood flow and wound healing.

Created2016-03-30
128619-Thumbnail Image.png
Description

Cervical cancer is the most common malignancy among women particularly in developing countries, with human papillomavirus (HPV) 16 causing 50% of invasive cervical cancers. A plant-based HPV vaccine is an alternative to the currently available virus-like particle (VLP) vaccines, and would be much less expensive. We optimized methods to express

Cervical cancer is the most common malignancy among women particularly in developing countries, with human papillomavirus (HPV) 16 causing 50% of invasive cervical cancers. A plant-based HPV vaccine is an alternative to the currently available virus-like particle (VLP) vaccines, and would be much less expensive. We optimized methods to express HPV16 L1 protein and purify VLPs from tobacco (Nicotiana benthamiana) leaves transfected with the magnICON deconstructed viral vector expression system. L1 proteins were extracted from agro-infiltrated leaves using a series of pH and salt mediated buffers. Expression levels of L1 proteins and VLPs were verified by immunoblot and ELISA, which confirmed the presence of sequential and conformational epitopes, respectively. Among three constructs tested (16L1d22, TPL1d22, and TPL1F), TPL1F, containing a full-length L1 and chloroplast transit peptide, was best. Extraction of HPV16 L1 from leaf tissue was most efficient (> 2.5% of total soluble protein) with a low-salt phosphate buffer. VLPs were purified using both cesium chloride (CsCl) density gradient and size exclusion chromatography. Electron microscopy studies confirmed the presence of assembled forms of HPV16 L1 VLPs. Collectively; our results indicated that chloroplast-targeted transient expression in tobacco plants is promising for the production of a cheap, efficacious HPV16 L1 VLP vaccine. Studies are underway to develop plant VLPs for the production of a cervical cancer vaccine.

ContributorsZahin, Maryam (Author) / Joh, Joongho (Author) / Khanal, Sujita (Author) / Husk, Adam (Author) / Mason, Hugh (Author) / Warzecha, Heribert (Author) / Ghim, Shin-je (Author) / Miller, Donald M. (Author) / Matoba, Nobuyuki (Author) / Bennett Jenson, Alfred (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor)
Created2016-08-12
128629-Thumbnail Image.png
Description

A distinct pathovar of Salmonella enterica serovar Typhimurium, ST313, has emerged in sub-Saharan Africa as a major cause of fatal bacteremia in young children and HIV-infected adults. D23580, a multidrug resistant clinical isolate of ST313, was previously shown to have undergone genome reduction in a manner that resembles that of

A distinct pathovar of Salmonella enterica serovar Typhimurium, ST313, has emerged in sub-Saharan Africa as a major cause of fatal bacteremia in young children and HIV-infected adults. D23580, a multidrug resistant clinical isolate of ST313, was previously shown to have undergone genome reduction in a manner that resembles that of the more human-restricted pathogen, Salmonella enterica serovar Typhi. It has since been shown through tissue distribution studies that D23580 is able to establish an invasive infection in chickens. However, it remains unclear whether ST313 can cause lethal disease in a non-human host following a natural course of infection. Herein we report that D23580 causes lethal and invasive disease in a murine model of infection following peroral challenge. The LD50 of D23580 in female BALB/c mice was 4.7 x 105 CFU. Tissue distribution studies performed 3 and 5 days post-infection confirmed that D23580 was able to more rapidly colonize the spleen, mesenteric lymph nodes and gall bladder in mice when compared to the well-characterized S. Typhimurium strain SL1344. D23580 exhibited enhanced resistance to acid stress relative to SL1344, which may lend towards increased capability to survive passage through the gastrointestinal tract as well as during its intracellular lifecycle. Interestingly, D23580 also displayed higher swimming motility relative to SL1344, S. Typhi strain Ty2, and the ST313 strain A130. Biochemical tests revealed that D23580 shares many similar metabolic features with SL1344, with several notable differences in the Voges-Proskauer and catalase tests, as well alterations in melibiose, and inositol utilization. These results represent the first full duration infection study using an ST313 strain following the entire natural course of disease progression, and serve as a benchmark for ongoing and future studies into the pathogenesis of D23580.

ContributorsYang, Jiseon (Author) / Barrila, Jennifer (Author) / Roland, Kenneth (Author) / Kilbourne, Jacquelyn (Author) / Ott, C. Mark (Author) / Forsyth, Rebecca (Author) / Nickerson, Cheryl (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor)
Created2015-06-19
128570-Thumbnail Image.png
Description

In vitro models that mimic in vivo host-pathogen interactions are needed to evaluate candidate drugs that inhibit bacterial virulence traits. We established a new approach to study Pseudomonas aeruginosa biofilm susceptibility on biotic surfaces, using a three-dimensional (3-D) lung epithelial cell model. P. aeruginosa formed antibiotic resistant biofilms on 3-D

In vitro models that mimic in vivo host-pathogen interactions are needed to evaluate candidate drugs that inhibit bacterial virulence traits. We established a new approach to study Pseudomonas aeruginosa biofilm susceptibility on biotic surfaces, using a three-dimensional (3-D) lung epithelial cell model. P. aeruginosa formed antibiotic resistant biofilms on 3-D cells without affecting cell viability. The biofilm-inhibitory activity of antibiotics and/or the anti-biofilm peptide DJK-5 were evaluated on 3-D cells compared to a plastic surface, in medium with and without fetal bovine serum (FBS). In both media, aminoglycosides were more efficacious in the 3-D cell model. In serum-free medium, most antibiotics (except polymyxins) showed enhanced efficacy when 3-D cells were present. In medium with FBS, colistin was less efficacious in the 3-D cell model. DJK-5 exerted potent inhibition of P. aeruginosa association with both substrates, only in serum-free medium. DJK-5 showed stronger inhibitory activity against P. aeruginosa associated with plastic compared to 3-D cells. The combined addition of tobramycin and DJK-5 exhibited more potent ability to inhibit P. aeruginosa association with both substrates. In conclusion, lung epithelial cells influence the efficacy of most antimicrobials against P. aeruginosa biofilm formation, which in turn depends on the presence or absence of FBS.

ContributorsCrabbe, Aurelie (Author) / Liu, Yulong (Author) / Matthijs, Nele (Author) / Rigole, Petra (Author) / De La Fuente-Nunez, Cesar (Author) / Davis, Richard (Author) / Ledesma, Maria (Author) / Sarker, Shameema (Author) / Van Houdt, Rob (Author) / Hancock, Robert E. W. (Author) / Coenye, Tom (Author) / Nickerson, Cheryl (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor)
Created2017-03-03
128521-Thumbnail Image.png
Description

Outer membrane vesicles (OMVs) isolated from Salmonella Typhimurium are potentially useful for developing subunit vaccines because of high immunogenicity and protective efficacy. However, flagella might remain in OMV pellets following OMV purification, resulting in non-essential immune responses and counteraction of bacterial protective immune responses when developing a vaccine against infection

Outer membrane vesicles (OMVs) isolated from Salmonella Typhimurium are potentially useful for developing subunit vaccines because of high immunogenicity and protective efficacy. However, flagella might remain in OMV pellets following OMV purification, resulting in non-essential immune responses and counteraction of bacterial protective immune responses when developing a vaccine against infection of multiple serotypes Salmonella. In this study, a flagellin-deficient S. Typhimurium mutant was constructed. Lipopolysaccharide profiles, protein profiles and cryo-electron microscopy revealed that there were no significant differences between the wild-type and mutant OMVs, with the exception of a large amount of flagellin in the wild-type OMVs. Neither the wild-type OMVs nor the non-flagellin OMVs were toxic to macrophages. Mice immunized with the non-flagellin OMVs produced high concentrations of IgG. The non-flagellin OMVs elicited strong mucosal antibody responses in mice when administered via the intranasal route in addition to provoking higher cross-reactive immune responses against OMPs isolated from S. Choleraesuis and S. Enteritidis. Both intranasal and intraperitoneal immunization with the non-flagellin OMVs provided efficient protection against heterologous S. Choleraesuis and S. Enteritidis challenge. Our results indicate that the flagellin-deficient OMVs may represent a new vaccine platform that could be exploited to facilitate the production of a broadly protective vaccine.

ContributorsLiu, Qiong (Author) / Liu, Qing (Author) / Yi, Jie (Author) / Liang, Kang (Author) / Hu, Bo (Author) / Zhang, Xiangmin (Author) / Curtiss, Roy (Author) / Kong, Qingke (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor)
Created2016-10-04
128436-Thumbnail Image.png
Description

Despite serving as the primary entry portal for coxsackievirus B (CVB), little is known about CVB infection of the intestinal epithelium, owing at least in part to the lack of suitable in vivo models and the inability of cultured cells to recapitulate the complexity and structure associated with the gastrointestinal

Despite serving as the primary entry portal for coxsackievirus B (CVB), little is known about CVB infection of the intestinal epithelium, owing at least in part to the lack of suitable in vivo models and the inability of cultured cells to recapitulate the complexity and structure associated with the gastrointestinal (GI) tract. Here, we report on the development of a three-dimensional (3-D) organotypic cell culture model of Caco-2 cells to model CVB infection of the gastrointestinal epithelium. We show that Caco-2 cells grown in 3-D using the rotating wall vessel (RWV) bioreactor recapitulate many of the properties of the intestinal epithelium, including the formation of well-developed tight junctions, apical-basolateral polarity, brush borders, and multicellular complexity. In addition, transcriptome analyses using transcriptome sequencing (RNA-Seq) revealed the induction of a number of genes associated with intestinal epithelial differentiation and/or intestinal processes in vivo when Caco-2 cells were cultured in 3-D. Applying this model to CVB infection, we found that although the levels of intracellular virus production were similar in two-dimensional (2-D) and 3-D Caco-2 cell cultures, the release of infectious CVB was enhanced in 3-D cultures at early stages of infection. Unlike CVB, the replication of poliovirus (PV) was significantly reduced in 3-D Caco-2 cell cultures. Collectively, our studies show that Caco-2 cells grown in 3-D using the RWV bioreactor provide a cell culture model that structurally and transcriptionally represents key aspects of cells in the human GI tract and can thus be used to expand our understanding of enterovirus-host interactions in intestinal epithelial cells.

Created2015-11-18
128457-Thumbnail Image.png
Description

In eutherians, the placenta acts as a barrier and conduit at the maternal-fetal interface. Syncytiotrophoblasts, the multinucleated cells that cover the placental villous tree surfaces of the human placenta, are directly bathed in maternal blood and are formed by the fusion of progenitor cytotrophoblasts that underlie them. Despite their crucial

In eutherians, the placenta acts as a barrier and conduit at the maternal-fetal interface. Syncytiotrophoblasts, the multinucleated cells that cover the placental villous tree surfaces of the human placenta, are directly bathed in maternal blood and are formed by the fusion of progenitor cytotrophoblasts that underlie them. Despite their crucial role in fetal protection, many of the events that govern trophoblast fusion and protection from microbial infection are unknown. We describe a three-dimensional (3D)–based culture model using human JEG-3 trophoblast cells that develop syncytiotrophoblast phenotypes when cocultured with human microvascular endothelial cells. JEG-3 cells cultured in this system exhibit enhanced fusogenic activity and morphological and secretory activities strikingly similar to those of primary human syncytiotrophoblasts. RNASeq analyses extend the observed functional similarities to the transcriptome, where we observed significant overlap between syncytiotrophoblast-specific genes and 3D JEG-3 cultures. Furthermore, JEG-3 cells cultured in 3D are resistant to infection by viruses and Toxoplasma gondii, which mimics the high resistance of syncytiotrophoblasts to microbial infections in vivo. Given that this system is genetically manipulatable, it provides a new platform to dissect the mechanisms involved in syncytiotrophoblast development and microbial resistance.

Created2016-03-04
129685-Thumbnail Image.png
Description

We have identified a natural clay mixture that exhibits in vitro antibacterial activity against a broad spectrum of bacterial pathogens. We collected four samples from the same source and demonstrated through antibacterial susceptibility testing that these clay mixtures have markedly different antibacterial activity against Escherichia coli and methicillin-resistant Staphylococcus aureus

We have identified a natural clay mixture that exhibits in vitro antibacterial activity against a broad spectrum of bacterial pathogens. We collected four samples from the same source and demonstrated through antibacterial susceptibility testing that these clay mixtures have markedly different antibacterial activity against Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA). Here, we used X-ray diffraction (XRD) and inductively coupled plasma - optical emission spectroscopy (ICP-OES) and - mass spectrometry (ICP-MS) to characterize the mineralogical and chemical features of the four clay mixture samples. XRD analyses of the clay mixtures revealed minor mineralogical differences between the four samples. However, ICP analyses demonstrated that the concentrations of many elements, Fe, Co, Cu, Ni, and Zn, in particular, vary greatly across the four clay mixture leachates. Supplementation of a non-antibacterial leachate containing lower concentrations of Fe, Co, Ni, Cu, and Zn to final ion concentrations and a pH equivalent to that of the antibacterial leachate generated antibacterial activity against E. coli and MRSA, confirming the role of these ions in the antibacterial clay mixture leachates. Speciation modeling revealed increased concentrations of soluble Cu2+ and Fe2+ in the antibacterial leachates, compared to the non-antibacterial leachates, suggesting these ionic species specifically are modulating the antibacterial activity of the leachates. Finally, linear regression analyses comparing the log(10) reduction in bacterial viability to the concentration of individual ion species revealed positive correlations with Zn2+ and Cu2+ and antibacterial activity, a negative correlation with Fe3+, and no correlation with pH. Together, these analyses further indicate that the ion concentration of specific species (Fe2+, Cu2+, and Zn2+) are responsible for antibacterial activity and that killing activity is not solely attributed to pH.

Created2013-05-17
128746-Thumbnail Image.png
Description

Post-exposure vaccination with vaccinia virus (VACV) has been suggested to be effective in minimizing death if administered within four days of smallpox exposure. While there is anecdotal evidence for efficacy of post-exposure vaccination this has not been definitively studied in humans. In this study, we analyzed post-exposure prophylaxis using several

Post-exposure vaccination with vaccinia virus (VACV) has been suggested to be effective in minimizing death if administered within four days of smallpox exposure. While there is anecdotal evidence for efficacy of post-exposure vaccination this has not been definitively studied in humans. In this study, we analyzed post-exposure prophylaxis using several attenuated recombinant VACV in a mouse model. A recombinant VACV expressing murine interferon gamma (IFN-γ) was most effective for post-exposure protection of mice infected with VACV and ectromelia virus (ECTV). Untreated animals infected with VACV exhibited severe weight loss and morbidity leading to 100% mortality by 8 to 10 days post-infection. Animals treated one day post-infection had milder symptoms, decreased weight loss and morbidity, and 100% survival. Treatment on days 2 or 3 post-infection resulted in 40% and 20% survival, respectively. Similar results were seen in ECTV-infected mice. Despite the differences in survival rates in the VACV model, the viral load was similar in both treated and untreated mice while treated mice displayed a high level of IFN-γ in the serum. These results suggest that protection provided by IFN-γ expressed by VACV may be mediated by its immunoregulatory activities rather than its antiviral effects. These results highlight the importance of IFN-γ as a modulator of the immune response for post-exposure prophylaxis and could be used potentially as another post-exposure prophylaxis tool to prevent morbidity following infection with smallpox and other orthopoxviruses.

ContributorsHolechek, Susan (Author) / Denzler, Karen (Author) / Heck, Michael (Author) / Schriewer, Jill (Author) / Buller, R. Mark (Author) / Legrand, Fatema A. (Author) / Verardi, Paulo H. (Author) / Jones, Leslie A. (Author) / Yilma, Tilahun (Author) / Jacobs, Bertram (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor)
Created2013-10-17
128747-Thumbnail Image.png
Description

Improved tools for providing specific intraoperative diagnoses could improve patient care. In neurosurgery, intraoperatively differentiating non-operative lesions such as CNS B-cell lymphoma from operative lesions can be challenging, often necessitating immunohistochemical (IHC) procedures which require up to 24-48 hours. Here, we evaluate the feasibility of generating rapid ex vivo specific

Improved tools for providing specific intraoperative diagnoses could improve patient care. In neurosurgery, intraoperatively differentiating non-operative lesions such as CNS B-cell lymphoma from operative lesions can be challenging, often necessitating immunohistochemical (IHC) procedures which require up to 24-48 hours. Here, we evaluate the feasibility of generating rapid ex vivo specific labeling using a novel lymphoma-specific fluorescent switchable aptamer. Our B-cell lymphoma-specific switchable aptamer produced only low-level fluorescence in its unbound conformation and generated an 8-fold increase in fluorescence once bound to its target on CD20-positive lymphoma cells. The aptamer demonstrated strong binding to B-cell lymphoma cells within 15 minutes of incubation as observed by flow cytometry. We applied the switchable aptamer to ex vivo xenograft tissue harboring B-cell lymphoma and astrocytoma, and within one hour specific visual identification of lymphoma was routinely possible. In this proof-of-concept study in human cell culture and orthotopic xenografts, we conclude that a fluorescent switchable aptamer can provide rapid and specific labeling of B-cell lymphoma, and that developing aptamer-based labeling approaches could simplify tissue staining and drastically reduce time to histopathological diagnoses compared with IHC-based methods. We propose that switchable aptamers could enhance expeditious, accurate intraoperative decision-making.

ContributorsGeorges, Joseph F. (Author) / Liu, Xiaowei (Author) / Eschbacher, Jennifer (Author) / Nichols, Joshua (Author) / Mooney, Michael A. (Author) / Joy, Anna (Author) / Spetzler, Robert F. (Author) / Feuerstein, Burt G. (Author) / Preul, Mark C. (Author) / Anderson, Trent (Author) / Yan, Hao (Author) / Nakaji, Peter (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor)
Created2015-04-15