This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 16
Filtering by

Clear all filters

129467-Thumbnail Image.png
Description

Sensory systems encode both the static quality of a stimulus (e.g., color or shape) and its kinetics (e.g., speed and direction). The limits with which stimulus kinetics can be resolved are well understood in vision, audition, and somatosensation. However, the maximum temporal resolution of olfactory systems has not been accurately

Sensory systems encode both the static quality of a stimulus (e.g., color or shape) and its kinetics (e.g., speed and direction). The limits with which stimulus kinetics can be resolved are well understood in vision, audition, and somatosensation. However, the maximum temporal resolution of olfactory systems has not been accurately determined. Here, we probe the limits of temporal resolution in insect olfaction by delivering high frequency odor pulses and measuring sensory responses in the antennae. We show that transduction times and pulse tracking capabilities of olfactory receptor neurons are faster than previously reported. Once an odorant arrives at the boundary layer of the antenna, odor transduction can occur within less than 2 ms and fluctuating odor stimuli can be resolved at frequencies more than 100 Hz. Thus, insect olfactory receptor neurons can track stimuli of very short duration, as occur when their antennae encounter narrow filaments in an odor plume. These results provide a new upper bound to the kinetics of odor tracking in insect olfactory receptor neurons and to the latency of initial transduction events in olfaction.

ContributorsSzyszka, Paul (Author) / Gerkin, Richard (Author) / Galizia, C. Giovanni (Author) / Smith, Brian (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-11-25
129254-Thumbnail Image.png
Description

Over the past couple of decades, quality has been an area of increased focus. Multiple models and approaches have been proposed to measure the quality in the construction industry. This paper focuses on determining the quality of one of the types of roofing systems used in the construction industry, i.e.,

Over the past couple of decades, quality has been an area of increased focus. Multiple models and approaches have been proposed to measure the quality in the construction industry. This paper focuses on determining the quality of one of the types of roofing systems used in the construction industry, i.e., sprayed polyurethane foam roofs (SPF roofs). Thirty-seven urethane-coated SPF roofs that were installed in 2005/2006 were visually inspected to measure the percentage of blisters and repairs three times over a period of four years, six years, and seven years. A repairing criteria was established after a six-year mark based on the data that were reported to contractors as vulnerable roofs. Furthermore, the relation between four possible contributing time-of-installation factors—contractor, demographics, season, and difficulty (number of penetrations and size of the roof in square feet) that could affect the quality of the roof was determined. Demographics and difficulty did not affect the quality of the roofs, whereas the contractor and the season when the roof was installed did affect the quality of the roofs.

ContributorsGajjar, Dhaval (Author) / Kashiwagi, Dean (Author) / Sullivan, Kenneth (Author) / Kashiwagi, Jacob (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-04-01
128776-Thumbnail Image.png
Description

We know very little about how soil-borne pollutants such as selenium (Se) can impact pollinators, even though Se has contaminated soils and plants in areas where insect pollination can be critical to the functioning of both agricultural and natural ecosystems. Se can be biotransferred throughout the food web, but few

We know very little about how soil-borne pollutants such as selenium (Se) can impact pollinators, even though Se has contaminated soils and plants in areas where insect pollination can be critical to the functioning of both agricultural and natural ecosystems. Se can be biotransferred throughout the food web, but few studies have examined its effects on the insects that feed on Se-accumulating plants, particularly pollinators. In laboratory bioassays, we used proboscis extension reflex (PER) and taste perception to determine if the presence of Se affected the gustatory response of honey bee (Apis mellifera L., Hymenoptera: Apidae) foragers. Antennae and proboscises were stimulated with both organic (selenomethionine) and inorganic (selenate) forms of Se that commonly occur in Se-accumulating plants. Methionine was also tested. Each compound was dissolved in 1 M sucrose at 5 concentrations, with sucrose alone as a control. Antennal stimulation with selenomethionine and methionine reduced PER at higher concentrations. Selenate did not reduce gustatory behaviors. Two hours after being fed the treatments, bees were tested for sucrose response threshold. Bees fed selenate responded less to sucrose stimulation. Mortality was higher in bees chronically dosed with selenate compared with a single dose. Selenomethionine did not increase mortality except at the highest concentration. Methionine did not significantly impact survival. Our study has shown that bees fed selenate were less responsive to sucrose, which may lead to a reduction in incoming floral resources needed to support coworkers and larvae in the field. If honey bees forage on nectar containing Se (particularly selenate), reductions in population numbers may occur due to direct toxicity. Given that honey bees are willing to consume food resources containing Se and may not avoid Se compounds in the plant tissues on which they are foraging, they may suffer similar adverse effects as seen in other insect guilds.

ContributorsHladun, Kristen R. (Author) / Smith, Brian (Author) / Mustard, Julie (Author) / Morton, Ray R. (Author) / Trumble, John T. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2012-04-13
128889-Thumbnail Image.png
Description

Neural representations of odors are subject to computations that involve sequentially convergent and divergent anatomical connections across different areas of the brains in both mammals and insects. Furthermore, in both mammals and insects higher order brain areas are connected via feedback connections. In order to understand the transformations and interactions

Neural representations of odors are subject to computations that involve sequentially convergent and divergent anatomical connections across different areas of the brains in both mammals and insects. Furthermore, in both mammals and insects higher order brain areas are connected via feedback connections. In order to understand the transformations and interactions that this connectivity make possible, an ideal experiment would compare neural responses across different, sequential processing levels. Here we present results of recordings from a first order olfactory neuropile – the antennal lobe (AL) – and a higher order multimodal integration and learning center – the mushroom body (MB) – in the honey bee brain. We recorded projection neurons (PN) of the AL and extrinsic neurons (EN) of the MB, which provide the outputs from the two neuropils. Recordings at each level were made in different animals in some experiments and simultaneously in the same animal in others. We presented two odors and their mixture to compare odor response dynamics as well as classification speed and accuracy at each neural processing level. Surprisingly, the EN ensemble significantly starts separating odor stimuli rapidly and before the PN ensemble has reached significant separation. Furthermore the EN ensemble at the MB output reaches a maximum separation of odors between 84–120 ms after odor onset, which is 26 to 133 ms faster than the maximum separation at the AL output ensemble two synapses earlier in processing. It is likely that a subset of very fast PNs, which respond before the ENs, may initiate the rapid EN ensemble response. We suggest therefore that the timing of the EN ensemble activity would allow retroactive integration of its signal into the ongoing computation of the AL via centrifugal feedback.

ContributorsStrube-Bloss, Martin (Author) / Herrera-Valdez, Marco A. (Author) / Smith, Brian (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2012-11-29
128905-Thumbnail Image.png
Description

Octopamine plays an important role in many behaviors in invertebrates. It acts via binding to G protein coupled receptors located on the plasma membrane of responsive cells. Several distinct subtypes of octopamine receptors have been found in invertebrates, yet little is known about the expression pattern of these different receptor

Octopamine plays an important role in many behaviors in invertebrates. It acts via binding to G protein coupled receptors located on the plasma membrane of responsive cells. Several distinct subtypes of octopamine receptors have been found in invertebrates, yet little is known about the expression pattern of these different receptor subtypes and how each subtype may contribute to different behaviors. One honey bee (Apis mellifera) octopamine receptor, AmOA1, was recently cloned and characterized. Here we continue to characterize the AmOA1 receptor by investigating its distribution in the honey bee brain. We used two independent antibodies produced against two distinct peptides in the carboxyl-terminus to study the distribution of the AmOA1 receptor in the honey bee brain. We found that both anti-AmOA1 antibodies revealed labeling of cell body clusters throughout the brain and within the following brain neuropils: the antennal lobes; the calyces, pedunculus, vertical (alpha, gamma) and medial (beta) lobes of the mushroom body; the optic lobes; the subesophageal ganglion; and the central complex. Double immunofluorescence staining using anti-GABA and anti-AmOA1 receptor antibodies revealed that a population of inhibitory GABAergic local interneurons in the antennal lobes express the AmOA1 receptor in the cell bodies, axons and their endings in the glomeruli. In the mushroom bodies, AmOA1 receptors are expressed in a subpopulation of inhibitory GABAergic feedback neurons that ends in the visual (outer half of basal ring and collar regions) and olfactory (lip and inner basal ring region) calyx neuropils, as well as in the collar and lip zones of the vertical and medial lobes. The data suggest that one effect of octopamine via AmOA1 in the antennal lobe and mushroom body is to modulate inhibitory neurons.

ContributorsSinakevitch, Irina (Author) / Mustard, Julie (Author) / Smith, Brian (Author) / College of Liberal Arts and Sciences (Contributor)
Created2011-01-18
128321-Thumbnail Image.png
Description

Octopamine (OA) underlies reinforcement during appetitive conditioning in the honey bee and fruit fly, acting via different subtypes of receptors. Recently, antibodies raised against a peptide sequence of one honey bee OA receptor, AmOA1, were used to study the distribution of these receptors in the honey bee brain (Sinakevitch et

Octopamine (OA) underlies reinforcement during appetitive conditioning in the honey bee and fruit fly, acting via different subtypes of receptors. Recently, antibodies raised against a peptide sequence of one honey bee OA receptor, AmOA1, were used to study the distribution of these receptors in the honey bee brain (Sinakevitch et al., 2011). These antibodies also recognize an isoform of the AmOA1 ortholog in the fruit fly (OAMB, mushroom body OA receptor). Here we describe in detail the distribution of AmOA1 receptors in different types of neurons in the honey bee and fruit fly antennal lobes. We integrate this information into a detailed anatomical analysis of olfactory receptor neurons (ORNs), uni- and multi-glomerular projection neurons (uPNs, and mPNs) and local interneurons (LNs) in glomeruli of the antennal lobe. These neurons were revealed by dye injection into the antennal nerve, antennal lobe, medial and lateral antenno-protocerbral tracts (m-APT and l-APT), and lateral protocerebral lobe (LPL) by use of labeled cell lines in the fruit fly or by staining with anti-GABA. We found that ORN receptor terminals and uPNs largely do not show immunostaining for AmOA1. About seventeen GABAergic mPNs leave the antennal lobe through the ml-APT and branch into the LPL. Many, but not all, mPNs show staining for AmOA1. AmOA1 receptors are also in glomeruli on GABAergic processes associated with LNs. The data suggest that in both species one important action of OA in the antennal lobe involves modulation of different types of inhibitory neurons via AmOA1 receptors. We integrated this new information into a model of circuitry within glomeruli of the antennal lobes of these species.

Created2013-10-25
127934-Thumbnail Image.png
Description

For the past three decades, the Saudi construction industry (SCI) has exhibited poor performance. Many research efforts have tried to identify the problem and the potential causes but there have been few publications identifying ways to mitigate the problem and describing testing to validate the proposed solution. This paper examines

For the past three decades, the Saudi construction industry (SCI) has exhibited poor performance. Many research efforts have tried to identify the problem and the potential causes but there have been few publications identifying ways to mitigate the problem and describing testing to validate the proposed solution. This paper examines the research and development (R&D) approach in the SCI. A literature research was performed identifying the impact that R&D has had on the SCI. A questionnaire was also created for surveying industry professionals and researchers. The results show evidence that the SCI practice and the academic research work exist in separate silos. This study recommends a change of mindset in both the public and private sector on their views on R&D since cooperation is required to create collaboration between the two sectors and improve the competitiveness of the country's economy.

ContributorsAlhammadi, Yasir (Author) / Algahtany, Mohammed (Author) / Kashiwagi, Dean (Author) / Sullivan, Kenneth (Author) / Kashiwagi, Jacob (Author) / Ira A. Fulton School of Engineering (Contributor)
Created2016-05-20
127935-Thumbnail Image.png
Description

The principles of a new project management model have been tested for the past 20 years. This project management model utilizes expertise instead of the traditional management, direction, and control (MDC). This new project management model is a leadership-based model instead of a management model. The practice of the new

The principles of a new project management model have been tested for the past 20 years. This project management model utilizes expertise instead of the traditional management, direction, and control (MDC). This new project management model is a leadership-based model instead of a management model. The practice of the new model requires a change in paradigm and project management structure. Some of the practices of this new paradigm include minimizing the flow of information and communications to and from the project manager [including meetings, emails and documents], eliminating technical communications, reducing client management, direction, and control of the vendor, and the hiring of vendors or personnel to do specific tasks. A vendors is hired only after they have clearly shown that they know what they are doing by showing past performance on similar projects, that they clearly understand how to create transparency to minimize risk that they do not control, and that they can clearly outline their project plan using a detailed milestone schedule including time, cost, and tasks all communicated in the language of metrics.

ContributorsRivera, Alfredo (Author) / Kashiwagi, Dean (Author) / Ira A. Fulton School of Engineering (Contributor)
Created2016-05-20
127955-Thumbnail Image.png
Description

This article describes the cellular sources for tyramine and the cellular targets of tyramine via the Tyramine Receptor 1 (AmTyr1) in the olfactory learning and memory neuropils of the honey bee brain. Clusters of approximately 160 tyramine immunoreactive neurons are the source of tyraminergic fibers with small varicosities in the

This article describes the cellular sources for tyramine and the cellular targets of tyramine via the Tyramine Receptor 1 (AmTyr1) in the olfactory learning and memory neuropils of the honey bee brain. Clusters of approximately 160 tyramine immunoreactive neurons are the source of tyraminergic fibers with small varicosities in the optic lobes, antennal lobes, lateral protocerebrum, mushroom body (calyces and gamma lobes), tritocerebrum and subesophageal ganglion (SEG). Our tyramine mapping study shows that the primary sources of tyramine in the antennal lobe and calyx of the mushroom body are from at least two Ventral Unpaired Median neurons (VUMmd and VUMmx) with cell bodies in the SEG. To reveal AmTyr1 receptors in the brain, we used newly characterized anti-AmTyr1 antibodies. Immunolocalization studies in the antennal lobe with anti-AmTyr1 antibodies showed that the AmTyr1 expression pattern is mostly in the presynaptic sites of olfactory receptor neurons (ORNs). In the mushroom body calyx, anti-AmTyr1 mapped the presynaptic sites of uniglomerular Projection Neurons (PNs) located primarily in the microglomeruli of the lip and basal ring calyx area. Release of tyramine/octopamine from VUM (md and mx) neurons in the antennal lobe and mushroom body calyx would target AmTyr1 expressed on ORN and uniglomerular PN presynaptic terminals. The presynaptic location of AmTyr1, its structural similarity with vertebrate alpha-2 adrenergic receptors, and previous pharmacological evidence suggests that it has an important role in the presynaptic inhibitory control of neurotransmitter release.

ContributorsSinakevitch, Irina (Author) / Daskalova, Sasha (Author) / Smith, Brian (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-10-24
127976-Thumbnail Image.png
Description

Variation in behaviour among group members often impacts collective outcomes. Individuals may vary both in the task that they perform and in the persistence with which they perform each task. Although both the distribution of individuals among tasks and differences among individuals in behavioural persistence can each impact collective behaviour,

Variation in behaviour among group members often impacts collective outcomes. Individuals may vary both in the task that they perform and in the persistence with which they perform each task. Although both the distribution of individuals among tasks and differences among individuals in behavioural persistence can each impact collective behaviour, we do not know if and how they jointly affect collective outcomes. Here, we use a detailed computational model to examine the joint impact of colony-level distribution among tasks and behavioural persistence of individuals, specifically their fidelity to particular resource sites, on the collective trade-off between exploring for new resources and exploiting familiar ones. We developed an agent-based model of foraging honeybees, parametrized by data from five colonies, in which we simulated scouts, who search the environment for new resources, and individuals who are recruited by the scouts to the newly found resources, i.e. recruits. We varied the persistence of returning to a particular food source of both scouts and recruits and found that, for each value of persistence, there is a different optimal ratio of scouts to recruits that maximizes resource collection by the colony. Furthermore, changes to the persistence of scouts induced opposite effects from changes to the persistence of recruits on the collective foraging of the colony. The proportion of scouts that resulted in the most resources collected by the colony decreased as the persistence of recruits increased. However, this optimal proportion of scouts increased as the persistence of scouts increased. Thus, behavioural persistence and task participation can interact to impact a colony's collective behaviour in orthogonal directions. Our work provides new insights and generates new hypotheses into how variations in behaviour at both the individual and colony levels jointly impact the trade-off between exploring for new resources and exploiting familiar ones.

ContributorsMosqueiro, Thiago (Author) / Cook, Chelsea (Author) / Huerta, Ramon (Author) / Gadau, Juergen (Author) / Smith, Brian (Author) / Pinter-Wollman, Noa (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-08-30