Matching Items (2)
155082-Thumbnail Image.png
Description
Nanotechnology has been applied to many areas such as medicine, manufacturing, catalysis, food, cosmetics, and energy since the beginning 21st century. However, the application of nanotechnology to geotechnical engineering has not received much attention. This research explored the technical benefits and the feasibility of applying nanoparticles in geotechnical engineering. Specific

Nanotechnology has been applied to many areas such as medicine, manufacturing, catalysis, food, cosmetics, and energy since the beginning 21st century. However, the application of nanotechnology to geotechnical engineering has not received much attention. This research explored the technical benefits and the feasibility of applying nanoparticles in geotechnical engineering. Specific studies were conducted by utilizing high-pressure devices, axisymmetric drop shape analysis (ADSA), microfluidics, time-lapse technology, Atomic Force Microscopy (AFM) to develop experiments. The effects of nanoparticle on modifying interfacial tension, wettability, viscosity, sweep efficiency and surface attraction forces were investigated. The results show that nanoparticles mixed in water can significantly reduce the interfacial tension of water in CO2 in the applications of nanofluid-CO2 flow in sediments; nanoparticle stabilized foam can be applied to isolate contaminants from clean soils in groundwater/soil remediation, as well as in CO2 geological sequestration or enhanced oil/gas recovery to dramatically improve the sweep efficiency; nanoparticle coatings are capable to increase the surface adhesion force so as to capture migrating fine particles to help prevent clogging near wellbore or in granular filter in the applications of oil and gas recovery, geological CO2 sequestration, geothermal recovery, contaminant transport, groundwater flow, and stormwater management system.
ContributorsZheng, Xianglei (Author) / Jang, Jaewon (Thesis advisor) / Zapata, Claudia (Committee member) / Kavazanjian, Edward (Committee member) / Arizona State University (Publisher)
Created2016
128697-Thumbnail Image.png
Description

The foam generated by the mixture of air and water has a much higher viscosity and lower mobility than those of pure water or gas that constitutes the air-water foam. The possibility of using the air-water foam as a flow barrier for the purpose of groundwater and soil remediation is

The foam generated by the mixture of air and water has a much higher viscosity and lower mobility than those of pure water or gas that constitutes the air-water foam. The possibility of using the air-water foam as a flow barrier for the purpose of groundwater and soil remediation is explored in this paper. A nanoparticle-stabilized air-water foam was fabricated by vigorously stirring the nano-fluid in pressurized condition. The foam bubble size distribution was analyzed with a microscope. The viscosities of foams generated with the solutions with several nanoparticle concentrations were measured as a function of time. The breakthrough pressure of foam-saturated microfluidic chips and sand columns were obtained. The hydraulic conductivity of a foam-filled sand column was measured after foam breakthrough. The results show that: (1) bubble coalescence and the Ostwald ripening are believed to be the reason of bubble size distribution change; (2) the viscosity of nanoparticle-stabilized foam and the breakthrough pressures decreased with time once the foam was generated; (3) the hydraulic conductivity of the foam-filled sand column was almost two orders of magnitude lower than that of a water-saturated sand column even after the foam-breakthrough. Based on the results in this study, the nanoparticle-stabilized air-water foam could be injected into contaminated soils to generate vertical barriers for temporary hydraulic conductivity reduction.

ContributorsZheng, Xianglei (Author) / Jang, Jaewon (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-12-14