Matching Items (2)
190963-Thumbnail Image.png
Description
The need for robust verification and validation of automated vehicles (AVs) to ensure driving safety grows more urgent as increasing numbers of AVs are allowed to operate on open roads. To address this need, AV developers can present a safety case to regulators and the public that provides an evidence-based

The need for robust verification and validation of automated vehicles (AVs) to ensure driving safety grows more urgent as increasing numbers of AVs are allowed to operate on open roads. To address this need, AV developers can present a safety case to regulators and the public that provides an evidence-based justification of their assertion that an AV is safe to operate on open roads. This work aims to describe the development of a scenario-based testing methodology that contributes to this safety case. A high-level definition of this test selection and scoring methodology (TSSM) is first presented, along with an outline of its scope and key ideas. This is followed by a literature review that details the current state of the art in AV testing, including the driving performance metrics and equations that provide a basis for the TSSM. A chart-based method for quantifying an AV’s operational design domain (ODD) and behavioral competency portfolio is then described that provides the foundation for a scenario generation and filtration process. After outlining a method for the AV to progress through increasingly robust test methods based on its current technology readiness level (TRL), the generation and filtration of two sets of scenarios by the TSSM is outlined: a standardized set that can be used to compare the performance of vehicles with identical ODD and behavioral competency portfolios, and a set containing high-relevance scenarios that is partially randomized to ensure test integrity. A related framework for incorporating testing on open roads is subsequently specified. An equation for an overall AV driving performance score is then defined that quantifies the aggregate performance of the AV across all generated scenarios. The TSSM continues according to an iterative process, which includes a method for exploring edge and corner scenarios, until a stopping condition is achieved. Two proofs of concept are provided: a demonstration of the ability of the TSSM to pare scenarios from a preexisting database, and an example ODD and behavioral competency portfolio specification form. Finally, this work concludes by evaluating the TSSM and its proofs of concept and outlining possible future work on the methodology.
ContributorsO'Malley, Gavin (Author) / Wishart, Jeffrey (Thesis advisor) / Zhao, Junfeng (Thesis advisor) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2023
Description
Model Predictive Control (MPC) is a fairly recent development in control optimization theory with high potential for use in the automotive industry, specifically in electric vehicle energy management systems. Because model predictive control is a particularly young concept and due to the MPC’s high computational load, it is overlooked when

Model Predictive Control (MPC) is a fairly recent development in control optimization theory with high potential for use in the automotive industry, specifically in electric vehicle energy management systems. Because model predictive control is a particularly young concept and due to the MPC’s high computational load, it is overlooked when compared to conventional control methods such as Proportional Integral Derivative (PID) controllers. Among recent advancements in computing technology in electric vehicles, model predictive controllers have become a viable solution in electric vehicle (EV) Energy Management Systems (EMS). The distinction between MPCs and other EMS control methods can be summarized by MPC’s ability to optimize outputs in systems where multiple constraints and state-space variables are introduced where conventional methods cannot. The MPC achieves this by using predictive modeling, allowing it system states based on information provided through a feedback loop. Feasibility for the use of MPCs in EV EMSs will be supported by using a simulated dual-motor electric vehicle in SIMULINKs Virtual Vehicle Composer (VVC) application. Findings from repeated simulations have proven model predictive control to be an effective alternative optimization strategy for electric vehicle energy management systems.
ContributorsWild, Trevor (Author) / Chen, Yan (Thesis director) / Zhao, Junfeng (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor)
Created2024-05