Matching Items (36)
132073-Thumbnail Image.png
Description
This paper presents a variable damping controller that can be implemented into wearable and exoskeleton robots. The variable damping controller functions by providing different levels of robotic damping from negative to positive to the coupled human-robot system. The wearable ankle robot was used to test this control strategy in the

This paper presents a variable damping controller that can be implemented into wearable and exoskeleton robots. The variable damping controller functions by providing different levels of robotic damping from negative to positive to the coupled human-robot system. The wearable ankle robot was used to test this control strategy in the different directions of motion. The range of damping applied was selected based on the known inherent damping of the human ankle, ensuring that the coupled system became positively damped, and therefore stable. Human experiments were performed to understand and quantify the effects of the variable damping controller on the human user. Within the study, the human subjects performed a target reaching exercise while the ankle robot provided the system with constant positive, constant negative, or variable damping. These three damping conditions could then be compared to analyze the performance of the system. The following performance measures were selected: maximum speed to quantify agility, maximum overshoot to quantify stability, and muscle activation to quantify effort required by the human user. Maximum speed was found to be statistically the same in the variable damping controller and the negative damping condition and to be increased from positive damping controller to variable damping condition by 57.9%, demonstrating the agility of the system. Maximum overshoot was found to significantly decrease overshoot from the negative damping condition to the variable damping controller by 39.6%, demonstrating an improvement in system stability with the variable damping controller. Muscle activation results showed that the variable damping controller required less effort than the positive damping condition, evidenced by the decreased muscle activation of 23.8%. Overall, the study demonstrated that a variable damping controller can balance the trade-off between agility and stability in human-robot interactions and therefore has many practical implications.
ContributorsArnold, James Michael (Author) / Lee, Hyunglae (Thesis director) / Yong, Sze Zheng (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / School for Engineering of Matter,Transport & Enrgy (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
131607-Thumbnail Image.png
Description
The objective of this project was to research and experimentally test methods of localization, waypoint following, and actuation for high-speed driving by an autonomous vehicle. This thesis describes the implementation of LiDAR localization techniques, Model Predictive Control waypoint following, and communication for actuation on a 2016 Chevrolet Camaro, Arizona State

The objective of this project was to research and experimentally test methods of localization, waypoint following, and actuation for high-speed driving by an autonomous vehicle. This thesis describes the implementation of LiDAR localization techniques, Model Predictive Control waypoint following, and communication for actuation on a 2016 Chevrolet Camaro, Arizona State University’s former EcoCAR. The LiDAR localization techniques include the NDT Mapping and Matching algorithms from the open-source autonomous vehicle platform, Autoware. The mapping algorithm was supplemented by that of Google Cartographer due to the limitations of map size in Autoware’s algorithms. The Model Predictive Control for waypoint following and the computer-microcontroller-actuator communication line are described. In addition to this experimental work, the thesis discusses an investigation of alternative approaches for each problem.
ContributorsCopenhaver, Bryce Stone (Author) / Berman, Spring (Thesis director) / Yong, Sze Zheng (Committee member) / Dean, W.P. Carey School of Business (Contributor) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
134066-Thumbnail Image.png
Description
For those interested in the field of robotics, there are not many options to get your hands on a physical robot without paying a steep price. This is why the folks at BCN3D Technologies decided to design a fully open-source 3D-printable robotic arm. Their goal was to reduce the barrier

For those interested in the field of robotics, there are not many options to get your hands on a physical robot without paying a steep price. This is why the folks at BCN3D Technologies decided to design a fully open-source 3D-printable robotic arm. Their goal was to reduce the barrier to entry for the field of robotics and make it exponentially more accessible for people around the world. For our honors thesis, we chose to take the design from BCN3D and attempt to build their robot, to see how accessible the design truly is. Although their designs were not perfect and we were forced to make some adjustments to the 3D files, overall the work put forth by the people at BCN3D was extremely useful in successfully building a robotic arm that is programmed with ease.
ContributorsCohn, Riley (Co-author) / Petty, Charles (Co-author) / Ben Amor, Hani (Thesis director) / Yong, Sze Zheng (Committee member) / Computer Science and Engineering Program (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
157622-Thumbnail Image.png
Description
Admittance control with fixed damping has been a successful control strategy in previous human-robotic interaction research. This research implements a variable damping admittance controller in a 7-DOF robotic arm coupled with a human subject’s arm at the end effector to study the trade-off of agility and stability and

Admittance control with fixed damping has been a successful control strategy in previous human-robotic interaction research. This research implements a variable damping admittance controller in a 7-DOF robotic arm coupled with a human subject’s arm at the end effector to study the trade-off of agility and stability and aims to produce a control scheme which displays both fast rise time and stability. The variable damping controller uses a measure of intent of movement to vary damping to aid the user’s movement to a target. The range of damping values is bounded by incorporating knowledge of a human arm to ensure the stability of the coupled human-robot system. Human subjects completed experiments with fixed positive, fixed negative, and variable damping controllers to evaluate the variable damping controller’s ability to increase agility and stability. Comparisons of the two fixed damping controllers showed as fixed damping increased, the coupled human-robot system reacted with less overshoot at the expense of rise time, which is used as a measure of agility. The inverse was also true; as damping became increasingly negative, the overshoot and stability of the system was compromised, while the rise time became faster. Analysis of the variable damping controller demonstrated humans could extract the benefits of the variable damping controller in its ability to increase agility in comparison to a positive damping controller and increase stability in comparison to a negative damping controller.
ContributorsBitz, Tanner Jacob (Author) / Lee, Hyunglae (Thesis advisor) / Marvi, Hamidreza (Committee member) / Yong, Sze Zheng (Committee member) / Arizona State University (Publisher)
Created2019
161600-Thumbnail Image.png
Description
In the development of autonomous ground vehicles (AGVs), how to guarantee vehicle lateral stability is one of the most critical aspects. Based on nonlinear vehicle lateral and tire dynamics, new driving requirements of AGVs demand further studies and analyses of vehicle lateral stability control strategies. To achieve comprehensive analyses and

In the development of autonomous ground vehicles (AGVs), how to guarantee vehicle lateral stability is one of the most critical aspects. Based on nonlinear vehicle lateral and tire dynamics, new driving requirements of AGVs demand further studies and analyses of vehicle lateral stability control strategies. To achieve comprehensive analyses and stability-guaranteed vehicle lateral driving control, this dissertation presents three main contributions.First, a new method is proposed to estimate and analyze vehicle lateral driving stability regions, which provide a direct and intuitive demonstration for stability control of AGVs. Based on a four-wheel vehicle model and a nonlinear 2D analytical LuGre tire model, a local linearization method is applied to estimate vehicle lateral driving stability regions by analyzing vehicle local stability at each operation point on a phase plane. The obtained stability regions are conservative because both vehicle and tire stability are simultaneously considered. Such a conservative feature is specifically important for characterizing the stability properties of AGVs. Second, to analyze vehicle stability, two novel features of the estimated vehicle lateral driving stability regions are studied. First, a shifting vector is formulated to explicitly describe the shifting feature of the lateral stability regions with respect to the vehicle steering angles. Second, dynamic margins of the stability regions are formulated and applied to avoid the penetration of vehicle state trajectory with respect to the region boundaries. With these two features, the shiftable stability regions are feasible for real-time stability analysis. Third, to keep the vehicle states (lateral velocity and yaw rate) always stay in the shiftable stability regions, different control methods are developed and evaluated. Based on different vehicle control configurations, two dynamic sliding mode controllers (SMC) are designed. To better control vehicle stability without suffering chattering issues in SMC, a non-overshooting model predictive control is proposed and applied. To further save computational burden for real-time implementation, time-varying control-dependent invariant sets and time-varying control-dependent barrier functions are proposed and adopted in a stability-guaranteed vehicle control problem. Finally, to validate the correctness and effectiveness of the proposed theories, definitions, and control methods, illustrative simulations and experimental results are presented and discussed.
ContributorsHuang, Yiwen (Author) / Chen, Yan (Thesis advisor) / Lee, Hyunglae (Committee member) / Ren, Yi (Committee member) / Yong, Sze Zheng (Committee member) / Zhang, Wenlong (Committee member) / Arizona State University (Publisher)
Created2021
171489-Thumbnail Image.png
Description
The unparalleled motion and manipulation abilities of an octopus have intrigued engineers and biologists for many years. How can an octopus having no bones transform its arms from a soft state to a one stiff enough to catch and even kill prey? The octopus arm is a muscular hydrostat that

The unparalleled motion and manipulation abilities of an octopus have intrigued engineers and biologists for many years. How can an octopus having no bones transform its arms from a soft state to a one stiff enough to catch and even kill prey? The octopus arm is a muscular hydrostat that enables these manipulations in and through its arm. The arm is a tightly packed array of muscle groups namely longitudinal, transverse and oblique. The orientation of these muscle fibers aids the octopus in achieving core movements like shortening, bending, twisting and elongation as hypothesized previously. Through localized electromyography (EMG) recordings of the longitudinal and transverse muscles of Octopus bimaculoides quantitatively the roles of these muscle layers will be confirmed. Five EMG electrode probes were inserted into the longitudinal and transverse muscle layers of an amputated octopus arm. One into the axial nerve cord to electrically stimulate the arm for movements. The experiments were conducted with the amputated arm submerged in sea water with surrounded cameras to record the movement, all housed in a Faraday cage. The findings of this research could possibly lead to the development of soft actuators built out of soft materials for applications in minimally invasive surgery, search-and-rescue operations, and wearable prosthetics.
ContributorsMathews, Robin Koshy (Author) / Marvi, Hamid (Thesis advisor) / Fisher, Rebecca (Committee member) / Xu, Zhe (Committee member) / Arizona State University (Publisher)
Created2022
171992-Thumbnail Image.png
Description
The need for autonomous cars has never been more vital, and for a vehicle to be completely autonomous, multiple components must work together, one of which is the capacity to park at the end of a mission. This thesis project aims to design and execute an automated parking assist system

The need for autonomous cars has never been more vital, and for a vehicle to be completely autonomous, multiple components must work together, one of which is the capacity to park at the end of a mission. This thesis project aims to design and execute an automated parking assist system (APAS). Traditional Automated parking assist systems (APAS) may not be effective in some constrained urban parking environments because of the parking space dimension. The thesis proposes a novel four-wheel steering (4-WS) vehicle for automated parallel parking to overcome this kind of challenge. Then, benefiting from the maneuverability enabled by the 4WS system, the feasible initial parking area is vastly expanded from those for the conventional 2WS vehicles. In addition, the expanded initial area is divided into four areas where different paths are planned correspondingly. In the proposed novel APAS first, a suitable parking space is identified through ultra-sonic sensors, which are mounted around the vehicle, and then depending upon the vehicle's initial position, various compact and smooth parallel parking paths are generated. An optimization function is built to get the smoothest (i.e., the smallest steering angle change and the shortest path) parallel parking path. With the full utilization of the 4WS system, the proposed path planning algorithm can allow a larger initial parking area that can be easily tracked by the 4WS vehicles. The proposed APAS for 4WS vehicles makes the automatic parking process in restricted spaces efficient. To verify the feasibility and effectiveness of the proposed APAS, a 4WS vehicle prototype is applied for validation through both simulation and experiment results.
ContributorsGujarathi, Kaushik Kumar (Author) / Chen, Yan (Thesis advisor) / Yong, Sze Zheng (Committee member) / Ren, Yi (Committee member) / Arizona State University (Publisher)
Created2022
190970-Thumbnail Image.png
Description
Animals have always been a source of inspiration for real-life problems. The octopus is one such animal that has a lot of untapped potential. The octopus’s arm is without solid joints or bone structure and despite this it can achieve many complicated movements with virtually infinite degrees of freedom. This

Animals have always been a source of inspiration for real-life problems. The octopus is one such animal that has a lot of untapped potential. The octopus’s arm is without solid joints or bone structure and despite this it can achieve many complicated movements with virtually infinite degrees of freedom. This ability is made possible through the unique morphology of the arm. The octopus’s arm is divided into transverse, longitudinal, oblique, and circular muscle groups and each one has a unique muscle fiber orientation. The octopus’s arm is classified as a hydrostat because it maintains a constant volume while contracting with the help of its different muscle groups. These muscle groups allow elongation, shortening, bending, and twisting of the arm when they work in combination with each other. To confirm the role of transverse and longitudinal muscle groups, an electromyography (EMG) recording of these muscle groups was performed while an amputated arm of an Octopus bimaculoides was stimulated with an electrical signal to induce movement. Statistical analysis was performed on these results to confirm the roles of each muscle group quantitatively. Octopus arm morphology was previously assumed to be uniform along the arm. Through a magnetic resonance imaging (MRI) study at the proximal, middle, and distal sections of the arm this notion was disproven, and a new pattern was discovered. Drawing inspiration from this finding and previous octopus arm prototypes, 4 bio-inspired designs were conceived and tested in finite element analysis (FEA) simulations. Four tests in elongation, shortening, bending, and transverse-assisted bending movements were performed on all designs to compare each design’s performance. The findings in this study have applications in engineering and soft robotics fields for use cases such as, handling fragile objects, minimally invasive surgeries, difficult-to-access areas that require squeezing through small holes, and other novel cases.
ContributorsAhmadi, Salaheddin (Author) / Marvi, Hamidreza (Thesis advisor) / Fisher, Rebecca (Committee member) / Xu, Zhe (Committee member) / Arizona State University (Publisher)
Created2023
171824-Thumbnail Image.png
Description
Magnetic liquids called ferrofluids have been used in applications ranging from audio speaker cooling and rotary pressure seals to retinal detachment surgery and implantable artificial glaucoma valves. Recently, ferrofluids have been investigated as a material for use in magnetically controllable liquid droplet robotics. Liquid droplet robotics is an emerging technology

Magnetic liquids called ferrofluids have been used in applications ranging from audio speaker cooling and rotary pressure seals to retinal detachment surgery and implantable artificial glaucoma valves. Recently, ferrofluids have been investigated as a material for use in magnetically controllable liquid droplet robotics. Liquid droplet robotics is an emerging technology that aims to apply control theory to manipulate fluid droplets as robotic agents to perform a wide range of tasks. Furthermore, magnetically controlled micro-robotics is another popular area of study where manipulating a magnetic field allows for the control of magnetized micro-robots. Both of these emerging fields have potential for impact toward medical applications: liquid characteristics such as being able to dissolve various compounds, be injected via a needle, and the potential for the human body to automatically filter and remove a liquid droplet robot, make liquid droplet robots advantageous for medical applications; while the ability to remotely control the torques and forces on an untethered microrobot via modulating the magnetic field and gradient is also highly advantageous. The research described in this dissertation explores applications and methods for the electromagnetic control of ferrofluid droplet robots. First, basic electrical components built from fluidic channels containing ferrofluid are made remotely tunable via the placement of ferrofluid within the channel. Second, a ferrofluid droplet is shown to be fully controllable in position, stretch direction, and stretch length in two dimensions using proportional-integral-derivative (PID) controllers. Third, control of a ferrofluid’s position, stretch direction, and stretch length is extended to three dimensions, and control gains are optimized via a Bayesian optimization process to achieve higher accuracy. Finally, magnetic control of both single and multiple ferrofluid droplets in two dimensions is investigated via a visual model predictive control approach based on machine learning. These achievements take both liquid droplet robotics and magnetic micro-robotics fields several steps closer toward real-world medical applications such as embedded soft electronic health monitors, liquid-droplet-robot-based drug delivery, and automated magnetically actuated surgeries.
ContributorsAhmed, Reza James (Author) / Marvi, Hamidreza (Thesis advisor) / Espanol, Malena (Committee member) / Rajagopalan, Jagannathan (Committee member) / Zhuang, Houlong (Committee member) / Xu, Zhe (Committee member) / Arizona State University (Publisher)
Created2022
171669-Thumbnail Image.png
Description
Soft robots provide an additional measure of safety and compliance over traditionalrigid robots. Generally, control and modelling experiments take place using a motion capture system for measuring robot configuration. While accurate, motion capture systems are expensive and require re-calibration whenever the cameras are adjusted. While advances in soft sensors contribute to a potential

Soft robots provide an additional measure of safety and compliance over traditionalrigid robots. Generally, control and modelling experiments take place using a motion capture system for measuring robot configuration. While accurate, motion capture systems are expensive and require re-calibration whenever the cameras are adjusted. While advances in soft sensors contribute to a potential solution to sensing outside of a lab environment, most of these sensing methods require the sensors to be embedded into the soft robot arm. In this work, a more practical sensing method is proposed using off-the-shelf sensors and a Robust Extended Kalman Filter based sensor fusion method. Inertial measurement unit sensors and wire draw sensors are used to accurately estimate the state of the robot. An explanation for the need for sensor fusion is included in this work. The sensor fusion state estimate is compared to a motion capture measurement along with the raw inertial measurement unit reading to verify the accuracy of the results. The potential for this sensing system is further validated through Linear Quadratic Gaussian control of the soft robot. The Robust Extended Kalman Filter based sensor fusion shows an error of less than one degree when compared to the motion capture system.
ContributorsStewart, Kyle James (Author) / Zhang, Wenlong (Thesis advisor) / Yong, Sze Zheng (Committee member) / Berman, Spring (Committee member) / Arizona State University (Publisher)
Created2022