Matching Items (2)
152880-Thumbnail Image.png
Description
The utilization of solar energy requires an efficient means of its storage as fuel. In bio-inspired artificial photosynthesis, light energy can be used to drive water oxidation, but catalysts that produce molecular oxygen from water are required. This dissertation demonstrates a novel complex utilizing earth-abundant Ni in combination with glycine

The utilization of solar energy requires an efficient means of its storage as fuel. In bio-inspired artificial photosynthesis, light energy can be used to drive water oxidation, but catalysts that produce molecular oxygen from water are required. This dissertation demonstrates a novel complex utilizing earth-abundant Ni in combination with glycine as an efficient catalyst with a modest overpotential of 0.475 ± 0.005 V for a current density of 1 mA/cm2 at pH 11. The production of molecular oxygen at a high potential was verified by measurement of the change in oxygen concentration, yielding a Faradaic efficiency of 60 ± 5%. This Ni species can achieve a current density of 4 mA/cm2 that persists for at least 10 hours. Based upon the observed pH dependence of the current amplitude and oxidation/reduction peaks, the catalysis is an electron-proton coupled process. In addition, to investigate the binding of divalent metals to proteins, four peptides were designed and synthesized with carboxylate and histidine ligands. The binding of the metals was characterized by monitoring the metal-induced changes in circular dichroism spectra. Cyclic voltammetry demonstrated that bound copper underwent a Cu(I)/Cu(II) oxidation/reduction change at a potential of approximately 0.32 V in a quasi-reversible process. The relative binding affinity of Mn(II), Fe(II), Co(II), Ni(II) and Cu(II) to the peptides is correlated with the stability constants of the Irving-Williams series for divalent metal ions. A potential application of these complexes of transition metals with amino acids or peptides is in the development of artificial photosynthetic cells.
ContributorsWang, Dong (Author) / Allen, James P. (Thesis advisor) / Ghirlanda, Giovanna (Committee member) / Redding, Kevin (Committee member) / Arizona State University (Publisher)
Created2014
128182-Thumbnail Image.png
Description

Stimuli-responsive polymers or so-called “smart polymers” are macromolecules that are sensitive to certain triggers from the external environment, including temperature, light, electrical or magnetic fields, and chemicals. The activated polymers produce observable or detectable micro- or nanoscale changes, such as morphology, molecular bond rearrangement/cleavage, and molecular motion, which can induce

Stimuli-responsive polymers or so-called “smart polymers” are macromolecules that are sensitive to certain triggers from the external environment, including temperature, light, electrical or magnetic fields, and chemicals. The activated polymers produce observable or detectable micro- or nanoscale changes, such as morphology, molecular bond rearrangement/cleavage, and molecular motion, which can induce changes in their macroscopic properties such as color, shape, and functionality. Due to the versatile selection of backbone and functional groups, stimuli-responsive polymers can be tailored to have a variety of specific mechanical, chemical, electrical, optical, biological, or other properties and can be engineered into different forms, including bulk, thin film, micro/nanoparticles, and composites. Over the years, many multidisciplinary efforts have been conducted and reported optimizing the functionality of stimuli-responsive polymers and exploring new and innovative applications. However, as shown below, original and exciting research in emerging sectors continues to drive the evolution of and interest in this class of polymer.

ContributorsWang, Dong (Author) / Green, Matthew (Author) / Chen, Kai (Author) / Daengngam, Chalongrat (Author) / Kotsuchibashi, Yohei (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-07-05