Matching Items (13)
150305-Thumbnail Image.png
Description
Lipids and free fatty acids (FFA) from cyanobacterium Synechocystis can be used for biofuel (e.g. biodiesel or renewable diesel) production. In order to utilize and scale up this technique, downstream processes including culturing and harvest, cell disruption, and extraction were studied. Several solvents/solvent systems were screened for lipid extraction from

Lipids and free fatty acids (FFA) from cyanobacterium Synechocystis can be used for biofuel (e.g. biodiesel or renewable diesel) production. In order to utilize and scale up this technique, downstream processes including culturing and harvest, cell disruption, and extraction were studied. Several solvents/solvent systems were screened for lipid extraction from Synechocystis. Chloroform + methanol-based Folch and Bligh & Dyer methods were proved to be "gold standard" for small-scale analysis due to their highest lipid recoveries that were confirmed by their penetration of the cell membranes, higher polarity, and stronger interaction with hydrogen bonds. Less toxic solvents, such as methanol and MTBE, or direct transesterification of biomass (without pre-extraction step) gave only slightly lower lipid-extraction yields and can be considered for large-scale application. Sustained exposure to high and low temperature extremes severely lowered the biomass and lipid productivity. Temperature stress also triggered changes of lipid quality such as the degree of unsaturation; thus, it affected the productivities and quality of Synechocystis-derived biofuel. Pulsed electric field (PEF) was evaluated for cell disruption prior to lipid extraction. A treatment intensity > 35 kWh/m3 caused significant damage to the plasma membrane, cell wall, and thylakoid membrane, and it even led to complete disruption of some cells into fragments. Treatment by PEF enhanced the potential for the low-toxicity solvent isopropanol to access lipid molecules during subsequent solvent extraction, leading to lower usage of isopropanol for the same extraction efficiency. Other cell-disruption methods also were tested. Distinct disruption effects to the cell envelope, plasma membrane, and thylakoid membranes were observed that were related to extraction efficiency. Microwave and ultrasound had significant enhancement of lipid extraction. Autoclaving, ultrasound, and French press caused significant release of lipid into the medium, which may increase solvent usage and make medium recycling difficult. Production of excreted FFA by mutant Synechocystis has the potential of reducing the complexity of downstream processing. Major problems, such as FFA precipitation and biodegradation by scavengers, account for FFA loss in operation. Even a low concentration of FFA scavengers could consume FFA at a high rate that outpaced FFA production rate. Potential strategies to overcome FFA loss include high pH, adsorptive resin, and sterilization techniques.
ContributorsSheng, Chieh (Author) / Rittmann, Bruce E. (Thesis advisor) / Westerhoff, Paul (Committee member) / Vermaas, Willem (Committee member) / Arizona State University (Publisher)
Created2011
151868-Thumbnail Image.png
Description
Microbial electrochemical cells (MXCs) are promising platforms for bioenergy production from renewable resources. In these systems, specialized anode-respiring bacteria (ARB) deliver electrons from oxidation of organic substrates to the anode of an MXC. While much progress has been made in understanding the microbiology, physiology, and electrochemistry of well-studied model ARB

Microbial electrochemical cells (MXCs) are promising platforms for bioenergy production from renewable resources. In these systems, specialized anode-respiring bacteria (ARB) deliver electrons from oxidation of organic substrates to the anode of an MXC. While much progress has been made in understanding the microbiology, physiology, and electrochemistry of well-studied model ARB such as Geobacter and Shewanella, tremendous potential exists for MXCs as microbiological platforms for exploring novel ARB. This dissertation introduces approaches for selective enrichment and characterization of phototrophic, halophilic, and alkaliphilic ARB. An enrichment scheme based on manipulation of poised anode potential, light, and nutrient availability led to current generation that responded negatively to light. Analysis of phototrophically enriched communities suggested essential roles for green sulfur bacteria and halophilic ARB in electricity generation. Reconstruction of light-responsive current generation could be successfully achieved using cocultures of anode-respiring Geobacter and phototrophic Chlorobium isolated from the MXC enrichments. Experiments lacking exogenously supplied organic electron donors indicated that Geobacter could produce a measurable current from stored photosynthate in the dark. Community analysis of phototrophic enrichments also identified members of the novel genus Geoalkalibacter as potential ARB. Electrochemical characterization of two haloalkaliphilic, non-phototrophic Geoalkalibacter spp. showed that these bacteria were in fact capable of producing high current densities (4-8 A/m2) and using higher organic substrates under saline or alkaline conditions. The success of these selective enrichment approaches and community analyses in identifying and understanding novel ARB capabilities invites further use of MXCs as robust platforms for fundamental microbiological investigations.
ContributorsBadalamenti, Jonathan P (Author) / Krajmalnik-Brown, Rosa (Thesis advisor) / Garcia-Pichel, Ferran (Committee member) / Rittmann, Bruce E. (Committee member) / Torres, César I (Committee member) / Vermaas, Willem (Committee member) / Arizona State University (Publisher)
Created2013
152085-Thumbnail Image.png
Description
Synechocystis sp PCC 6803 is a photosynthetic cyanobacterium that can be easily transformed to produce molecules of interest; this has increased Synechocystis’ popularity as a clean energy platform. Synechocystis has been shown to produce and excrete molecules such as fatty acids, isoprene, etc. after appropriate genetic modification. Challenges faced for

Synechocystis sp PCC 6803 is a photosynthetic cyanobacterium that can be easily transformed to produce molecules of interest; this has increased Synechocystis’ popularity as a clean energy platform. Synechocystis has been shown to produce and excrete molecules such as fatty acids, isoprene, etc. after appropriate genetic modification. Challenges faced for large–scale growth of modified Synechocystis include abiotic stress, microbial contamination and high processing costs of product and cell material. Research reported in this dissertation contributes to solutions to these challenges. First, abiotic stress was addressed by overexpression of the heat shock protein ClpB1. In contrast to the wild type, the ClpB1 overexpression mutant (Slr1641+) tolerated rapid temperature changes, but no difference was found between the strains when temperature shifts were slower. Combination of ClpB1 overexpression with DnaK2 overexpression (Slr1641+/Sll0170+) further increased thermotolerance. Next, we used a Synechocystis strain that carries an introduced isoprene synthase gene (IspS+) and that therefore produces isoprene. We attempted to increase isoprene yields by overexpression of key enzymes in the methyl erythritol phosphate (MEP) pathway that leads to synthesis of the isoprene precursor. Isoprene production was not increased greatly by MEP pathway induction, likely because of limitations in the affinity of the isoprene synthase for the substrate. Finally, two extraction principles, two–phase liquid extraction (e.g., with an organic and aqueous phase) and solid–liquid extraction (e.g., with a resin) were tested. Two–phase liquid extraction is suitable for separating isoprene but not fatty acids from the culture medium. Fatty acid removal required acidification or surfactant addition, which affected biocompatibility. Therefore, improvements of both the organism and product–harvesting methods can contribute to enhancing the potential of cyanobacteria as solar–powered biocatalysts for the production of petroleum substitutes.
ContributorsGonzalez Esquer, Cesar Raul (Author) / Vermaas, Willem (Thesis advisor) / Chandler, Douglas (Committee member) / Bingham, Scott (Committee member) / Nielsen, David (Committee member) / Arizona State University (Publisher)
Created2013
132460-Thumbnail Image.png
Description
Traditional methods of genetic engineering are often limited to relatively few rounds of gene additions, deletions, or alterations due to a lack of additional available antibiotic resistance markers. Counter-selection marker methods can be used to remove and reuse marker genes as desired, resulting in markerless engineered strains and allowing for

Traditional methods of genetic engineering are often limited to relatively few rounds of gene additions, deletions, or alterations due to a lack of additional available antibiotic resistance markers. Counter-selection marker methods can be used to remove and reuse marker genes as desired, resulting in markerless engineered strains and allowing for theoretically unlimited rounds of genetic modifications. The development of suitable counter-selection markers is vital for the development of model organisms such as cyanobacteria as biotechnological platforms.
In the hopes of providing other researchers with a new tool for markerless genetic engineering of cyanobacteria, the toxin MazF from E. coli was developed as a counter-selection marker in the most widely used cyanobacterium, Synechocystis sp. PCC 6803. The mazF gene from E. coli was cloned and inserted into a plasmid vector for downstream transformation of Synechocystis. The plasmid construct also contained two homologous flanking regions for integration of the insert into the Synechocystis genome, a nickel-inducible response regulator and promoter to control MazF expression, and a kanamycin resistance gene to serve as the antibiotic marker. In order to ensure the mazF plasmids could be cloned in a MazF-sensitive E. coli host even with slight promoter leakage, MazF expression was toned down by decreasing the efficiency of translation initiation by inserting base pairs between the ribosome binding site and the start codon of the mazF gene. Following successful cloning by E. coli, the mazF plasmids were then used to transform Synechocystis to create mazF mutant strains. Genomic analysis confirmed the successful transformation and segregation of mazF mutant strains containing the desired marker cassette. Phenotypic analysis revealed both growth arrest and production of mazF transcripts in mazF mutant strains following the addition of nickel to the cell cultures, indicating successful nickel-induced MazF expression as desired.
ContributorsNewell, Phoebe Quynh (Co-author) / Newell, Phoebe (Co-author) / Vermaas, Willem (Thesis director) / Wang, Xuan (Committee member) / Li, Shuqin (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132373-Thumbnail Image.png
Description
The oxygen sensitivity of hydrogenase is a large barrier in maximizing the efficiency of algal hydrogen production, despite recent efforts aimed at rewiring photosynthesis. This project focuses on the role of photosystem II (PSII) in extended hydrogen production by cells expressing the PSI-HydA1 chimera, with the goal of optimizing continuous

The oxygen sensitivity of hydrogenase is a large barrier in maximizing the efficiency of algal hydrogen production, despite recent efforts aimed at rewiring photosynthesis. This project focuses on the role of photosystem II (PSII) in extended hydrogen production by cells expressing the PSI-HydA1 chimera, with the goal of optimizing continuous production of photobiohydrogen in the green alga, Chlamydomonas reinhardtii. Experiments utilizing an artificial PSII electron
Therefore, it can be concluded that downstream processes are limiting the electron flow to the hydrogenase. It was also shown that the use of a PSII inhibitor, 3-(3,4-dichlorophenyl)-1,1- dimethylurea (DCMU), at sub-saturating concentrations under light exposure during growth temporarily improves the duration of the H2 evolution phase. The maximal hydrogen production rate was found to be approximately 32 nmol h-1 (µg Chl)-1. Although downregulation of PSII activity with DCMU improves the long-term hydrogen production, future experiments must be focused on improving oxygen tolerance of the hydrogenase as a means for higher hydrogen yields.
ContributorsO'Boyle, Taryn Reilly (Author) / Redding, Kevin (Thesis director) / Ghirlanda, Giovanna (Committee member) / Vermaas, Willem (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
131310-Thumbnail Image.png
Description
To efficiently produce biofuels and meet the planet’s rising energy demands, different biofuel production methods need to be developed and improved. One of the ways is to produce fatty acid methyl esters (FAMEs) in Synechocystis sp. PCC 6803, a versatile strain of cyanobacteria. In this thesis, Synechocystis was engineered to

To efficiently produce biofuels and meet the planet’s rising energy demands, different biofuel production methods need to be developed and improved. One of the ways is to produce fatty acid methyl esters (FAMEs) in Synechocystis sp. PCC 6803, a versatile strain of cyanobacteria. In this thesis, Synechocystis was engineered to produce and excrete methyl laurate. In this pathway, first, lauroyl-ACP from fatty acid biosynthesis is converted to laurate by a thioesterase (TE) from Umbellularia californica. Then, the laurate is methylated to methyl laurate by a juvenile hormone acid O-methyltransferase (DmJHAMT) from Drosophila melanogaster. The TE/∆slr1609 strain of Synechocystis sp. PCC 6803 contains the TE gene and lacks the slr1609 gene encoding an acyl–acyl carrier protein synthetase, which functions in free fatty acid reuptake. The DmJHAMT gene was introduced into this strain for FAME production.
The DmJHAMT gene was cloned into a vector that contains neutral sites from the Synechocystis genome, making it suitable for homologous recombination, and a kanamycin resistance gene, for selection. The obtained plasmid was verified using restriction digests and Sanger sequencing. The sequence analysis and comparison of the cDNA in the obtained plasmid and the mRNA transcript of the same gene revealed three amino acid differences. Subsequent comparison with homologous genes in other Drosophila species revealed the differences in the cDNA match those of the other species, and thus, the gene most likely is functional.
The plasmid was transformed into Synechocystis, and PCRs were used to confirm proper integration and segregation. The TE/∆slr1609/DmJHAMT strain produced 62 mg/L methyl laurate in 12 days under a light intensity of 150 µmol photons m-2 s-1, bubbled with 0.5% CO2 at a rate of 30 mL/min, and supplemented with 0.5 mM methionine. The laurate levels did not decrease over time, but instead, remained stagnant after day 3. When the strain was grown in the same conditions without methionine, the laurate concentrations continued to increase above 400 µM, suggesting minimal methyl laurate production and thus a strong need for methionine supplementation. This work provides further evidence of the viability and success of the introduced FAME production pathway, and improved efficiency may be gained in the future.
ContributorsSharma, Shuchi (Author) / Vermaas, Willem (Thesis director) / Wang, Xuan (Committee member) / Li, Shuqin (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
134124-Thumbnail Image.png
Description
There is an ever-increasing need in the world to develop a source of fuel that is clean, renewable and feasible in terms of production and implementation. Hydrogen gas presents a possible solution to these energy needs, particularly if given a way to produce hydrogen gas efficiently. Biological hydrogen (biohydrogen) production

There is an ever-increasing need in the world to develop a source of fuel that is clean, renewable and feasible in terms of production and implementation. Hydrogen gas presents a possible solution to these energy needs, particularly if given a way to produce hydrogen gas efficiently. Biological hydrogen (biohydrogen) production presents a potential way to do just this. It is known that hydrogenases are active in wild-type algal photosynthesis pathways but are only active in anoxic environments, where they serve as electron sinks and compete poorly for electrons from photosystem I. To circumvent these issues, a psaC-hydA1 fusion gene was designed and incorporated into a plasmid that was then used to transform hydrogenase-free Chlamydomonas reinhardtii mutants. Results obtained suggest that the psaC-hydA1 gene completely replaced the wild-type psaC gene in the chloroplast genome and the fusion was expressed in the algal cells. Western blotting verified the presence of the HydA1-PsaC fusion proteins in the transformed cells, P700 photobleaching suggested the normal assembly of FA/FB clusters in PsaC-HydA1, and PSII fluorescence data suggested that HydA1 protein limited photosynthetic electron transport flow in the fusion. Hydrogen production was measured in dark, high light, and under maximal reducing conditions. In all conditions, the wild-type algal strain (with a normal PsaC protein) exhibited higher rates of hydrogen production in the light over 2 hours than the WT strain, though both strains produced similar rates in the dark.
ContributorsSmith, Alec (Author) / Redding, Kevin (Thesis director) / Jones, Anne (Committee member) / Vermaas, Willem (Committee member) / School of Molecular Sciences (Contributor) / Sanford School of Social and Family Dynamics (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
135291-Thumbnail Image.png
Description
Acyl Carrier Protein (ACP) is a small, acidic protein that plays an essential role in fatty acid synthesis by elongating fatty acid chains. ACP was isolated from an extract of a modified strain of Synechocystis sp. PCC 6803 that contains a thioesterase and from which the acyl-ACP synthetase has been

Acyl Carrier Protein (ACP) is a small, acidic protein that plays an essential role in fatty acid synthesis by elongating fatty acid chains. ACP was isolated from an extract of a modified strain of Synechocystis sp. PCC 6803 that contains a thioesterase and from which the acyl-ACP synthetase has been deleted. Using ammonium sulfate precipitation to isolate a crude protein fraction containing ACP, immunoblot analysis was performed to determine relative amounts of free and acylated-ACP in the cell. The nature of fatty acids attached to ACP was determined by creating butylamide derivatives that were analyzed using GC/MS. Immunoblot analysis showed a roughly 1:1 ratio of acylated ACP to free ACP in the cell depending on the nutritional state of the cell. From GC/MS data it was determined that palmitic acid was the predominate component of acyl groups attached to ACP. The results indicate that there is a significant amount of acyl-ACP, a feedback inhibitor of early steps in the fatty acid biosynthesis pathway, in the cell. Moreover, the availability of free ACP may also limit fatty acid biosynthesis. Most likely it is necessary for ACP to be overexpressed or to have the palmitic acid cleaved off in order to synthesize optimal amounts of lauric acid to be used for cyanobacterial biofuel production.
ContributorsWu, Sharon Gao (Author) / Vermaas, Willem (Thesis director) / Redding, Kevin (Committee member) / School of Sustainability (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Molecular Sciences (Contributor) / School of International Letters and Cultures (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description
The partitioning of photosynthates between their sites of production (source) and their sites of utilization (sink) is a major determinant of crop yield and the potential of regulating this translocation promises substantial opportunities for yield increases. Ubiquitous overexpression of the plant type I proton pyrophosphatase (H+-PPase) in crops improves several

The partitioning of photosynthates between their sites of production (source) and their sites of utilization (sink) is a major determinant of crop yield and the potential of regulating this translocation promises substantial opportunities for yield increases. Ubiquitous overexpression of the plant type I proton pyrophosphatase (H+-PPase) in crops improves several valuable traits including salt tolerance and drought resistance, nutrient and water use efficiencies, and increased root biomass and yield. Originally, type I H+-PPases were described as pyrophosphate (PPi)-dependent proton pumps localized exclusively in vacuoles of mesophyll and meristematic tissues. It has been proposed that in the meristematic tissues, the role of this enzyme would be hydrolyzing PPi originated in biosynthetic reactions and favoring sink strength. Interestingly, this enzyme has been also localized at the plasma membrane of companion cells in the phloem which load and transport photosynthates from source leaves to sinks. Of note, the plasma membrane-localized H+-PPase could only function as a PPi-synthase in these cells due to the steep proton gradient between the apoplast and cytosol. The generated PPi would favor active sucrose loading through the sucrose/proton symporter in the phloem by promoting sucrose hydrolysis through the Sucrose Synthase pathway and providing the ATP required to maintain the proton gradient. To better understand these two different roles of type I H+-PPases, a series of Arabidopsis thaliana transgenic plants were generated. By expressing soluble pyrophosphatases in companion cells of Col-0 ecotype and H+-PPase mutants, impaired photosynthates partitioning was observed, suggesting phloem-localized H+-PPase could generate the PPi required for sucrose loading. Col-0 plants expressed with either phloem- or meristem-specific AVP1 overexpression cassette and the cross between the two tissue specific lines (Cross) were generated. The results showed that the phloem-specific AVP1-overexpressing plants had increased root hair elongation under limited nutrient conditions and both phloem- and meristem-overexpression of AVP1 contributed to improved rhizosphere acidification and drought resistance. It was concluded that H+-PPases localized in both sink and source tissues regulate plant growth and performance under stress through its versatile enzymatic functions (PPi hydrolase and synthase).
ContributorsLi, Lin (Author) / Park, Yujin (Thesis advisor) / Mangone, Marco (Committee member) / Roberson, Robert (Committee member) / Vermaas, Willem (Committee member) / Arizona State University (Publisher)
Created2022
Description
The symbiotic relationship between wood-eating termites and hindgut protists is crucial for termite digestion, with protists aiding in lignocellulose degradation. This relationship, dating back to the late Jurassic, resembles the ancestral association between termites and wood roaches, Cryptocercus, established over 150 million years ago. Paraneotermes simplicicornis and Kalotermes flavicollis, members

The symbiotic relationship between wood-eating termites and hindgut protists is crucial for termite digestion, with protists aiding in lignocellulose degradation. This relationship, dating back to the late Jurassic, resembles the ancestral association between termites and wood roaches, Cryptocercus, established over 150 million years ago. Paraneotermes simplicicornis and Kalotermes flavicollis, members of the Kalotermitidae family, harbor diverse symbiotic communities pivotal for wood digestion and nitrogen fixation. Parabasalians, such as Cristamonadea, exhibit morphological diversity, with some taxa being joeniids, calonymphids, or devescovinids, residing primarily in termite guts. To explore the coevolutionary history and morphological evolution, this study aims to describe devescovinid communities in P. simplicicornis and K. flavicollis using morphological and molecular approaches. Phylogenetic analysis reveals the relationships among Devescovina, Metadevescovina, Macrotrichomonas, and Calonympha. A misidentification of published sequence AB458854 Joenia annectens provides valuable insights into how species are classified, while the discovery of previously unknown symbionts demonstrates the extent of diversity within these ecosystems. Notably, Clade 2 was named Prototermanova, where novel Cristamonadea species were identified, exhibiting genetic and morphological similarities to Devescovina. Similarly, Clade 4 was labelled Trichoterm, where two novel Devescovina species challenged existing taxonomic classifications. DNA sequencing analyses provided additional validation, highlighting the genetic diversity and potential novelty of symbionts within the termite gut. Morphological examination aligns with previously identified genera, and BLAST analysis supports observations of potential novelty in certain symbionts. Protists from P. simplicicornis and K. flavicollis show close relation to Joenia and Devescovina, respectively. This study sheds light on the complexity of termite symbiotic relationships and underscores the need for continued research to fully comprehend protist diversity within termite guts.
ContributorsNukala, Keerthana (Author) / Gile, Gillian (Thesis director) / Vermaas, Willem (Committee member) / Swichtenberg, Kali (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / Department of Supply Chain Management (Contributor) / School of Life Sciences (Contributor)
Created2024-05