Matching Items (19)
148182-Thumbnail Image.png
Description

Globally, the incidental capture of non-target species in fisheries (bycatch) has been linked to declines of ecologically, economically, and culturally important marine species. Gillnet fisheries have especially high bycatch due to their non-selective nature, necessitating the development of new bycatch reduction technologies (BRTs). Net illumination is an emerging BRT that

Globally, the incidental capture of non-target species in fisheries (bycatch) has been linked to declines of ecologically, economically, and culturally important marine species. Gillnet fisheries have especially high bycatch due to their non-selective nature, necessitating the development of new bycatch reduction technologies (BRTs). Net illumination is an emerging BRT that has shown promise in reducing bycatch of marine megafauna, including sea turtles, cetaceans, and seabirds. However, little research has been conducted to understand the effects of net illumination on fish assemblages, including bony fish and elasmobranchs (i.e. sharks, rays, and skates). Here, I assessed a 7-year dataset of paired net illumination trials using four different types of light (green LEDs, green chemical glowsticks, ultraviolet (UV) lights, and orange lights) to examine the effects of net illumination on fish catch and bycatch in a gillnet fishery at Baja California Sur, Mexico. Analysis revealed no significant effect on bony fish target catch or bycatch for any light type. There was a significant decrease in elasmobranch bycatch using UV and orange lights, with orange lights showing the most promise for decreasing elasmobranch bycatch, resulting in a 50% reduction in bycatch rates. Analysis of the effects of net illumination on elasmobranch target catch was limited due to insufficient data. These results indicate that the illumination of gillnets may offer a practical solution for reducing fish bycatch while maintaining target catch. More research should be conducted to understand the effects of net illumination in different fisheries, how net illumination affects fisher profit and efficiency, and how net illumination affects fish behavior. Further optimization of net illumination is also necessary before the technology can be recommended on a broader scale.

ContributorsBurgher, Kayla Marie (Author) / Senko, Jesse (Thesis director) / Throop, Heather (Committee member) / School of Life Sciences (Contributor) / School of Sustainability (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147631-Thumbnail Image.png
Description

Drylands, though one of the largest biomes, are also one of the most understudied biomes on the planet. This leaves scientists with limited understanding of unique life forms that have adapted to live in these arid environments. One such life form is the hypolithic microbial community; these are autotrophic cyanobacteria

Drylands, though one of the largest biomes, are also one of the most understudied biomes on the planet. This leaves scientists with limited understanding of unique life forms that have adapted to live in these arid environments. One such life form is the hypolithic microbial community; these are autotrophic cyanobacteria colonies that can be found on the underside of translucent rocks in deserts. With the light that filters through the rock above them, the microbes can photosynthesize and fix carbon from the atmosphere into the soil. In this study I looked at hypolith-like rock distribution in the Namib Desert by using image recognition software. I trained a Mask R-CNN network to detect quartz rock in images from the Gobabeb site. When the method was analyzed using the entire data set, the distribution of rock sizes between the manual annotations and the network predictions was not similar. When evaluating rock sizes smaller than 0.56 cm2 the method showed statistical significance in support of being a promising data collection method. With more training and corrective effort on the network, this method shows promise to be an accurate and novel way to collect data efficiently in dryland research.

ContributorsCollins, Catherine (Author) / Throop, Heather (Thesis director) / Das, Jnaneshwar (Committee member) / Aparecido, Luiza (Committee member) / School of Earth and Space Exploration (Contributor) / School of Art (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
134651-Thumbnail Image.png
Description
“Extremophile” is used to describe life that has adapted to extreme conditions and the conditions they live in are often used to understand the limits of life. In locations with low precipitation and high solar radiation, photosynthetic cyanobacteria can colonize the underside of quartz fragments, forming ‘hypoliths.’ The quartz provides

“Extremophile” is used to describe life that has adapted to extreme conditions and the conditions they live in are often used to understand the limits of life. In locations with low precipitation and high solar radiation, photosynthetic cyanobacteria can colonize the underside of quartz fragments, forming ‘hypoliths.’ The quartz provides protection against wind, reduces solar radiation, and slows the rate of evaporation following infrequent rain or fog events. In most desert systems, vascular plants are the main primary producers. However, hypoliths might play a key role in carbon fixation in hyperarid deserts that are mostly devoid of vegetation. I investigated hypolith distribution and carbon fixation at six sites along a rainfall and fog gradient in the central Namib Desert in Namibia. I used line point intersect transects to assess ground cover (bare soil, colonized quartz fragment, non-colonized quartz fragment, non-quartz rock, grass, or lichen) at each site. Additionally, at each site I selected 12 hypoliths and measured cyanobacteria colonization on quartz and measured CO2 flux of hypoliths at five of the six sites.
Ground cover was fairly similar among sites, with bare ground > non-colonized quartz fragments > colonized quartz fragments > non-quartz rocks. Grass was present only at the site with the highest mean annual precipitation (MAP) where it accounted for 1% of ground cover. Lichens were present only at the lowest MAP site, where they accounted for 30% of ground cover. The proportion of quartz fragments colonized generally increased with MAP, from 5.9% of soil covered by colonized hypoliths at the most costal (lowest MAP) site, to 18.7% at the most inland (highest MAP) site. There was CO2 uptake from most hypoliths measured, with net carbon uptake rates ranging from 0.3 to 6.4 μmol m-2 s-1 on well hydrated hypoliths. These carbon flux values are similar to previous work in the Mojave Desert. Our results suggest that hypoliths might play a key role in the fixation of organic carbon in hyperarid ecosystems where quartz fragments are abundant, with MAP constraining hypolith abundance. A better understanding of these extremophiles and the niche they fill could give an understanding of how microbial life might exist in extraterrestrial environments similar to hyperarid deserts.
ContributorsMonus, Brittney Daniel (Author) / Throop, Heather (Thesis director) / Hall, Sharon (Committee member) / Cadillo-Quiroz, Hinsby (Committee member) / School of Life Sciences (Contributor) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
171772-Thumbnail Image.png
Description
Physical and structural tree measurements are applied in forestry, precision agriculture and conservation for various reasons. Since measuring tree properties manually is tedious, measurements from only a small subset of trees present in a forest, agricultural land or survey site are often used. Utilizing robotics to autonomously estimate physical tree

Physical and structural tree measurements are applied in forestry, precision agriculture and conservation for various reasons. Since measuring tree properties manually is tedious, measurements from only a small subset of trees present in a forest, agricultural land or survey site are often used. Utilizing robotics to autonomously estimate physical tree dimensions would speed up the measurement or data collection process and allow for a much larger set of trees to be used in studies. In turn, this would allow studies to make more generalizable inferences about areas with trees. To this end, this thesis focuses on developing a system that generates a semantic representation of the topology of a tree in real-time. The first part describes a simulation environment and a real-world sensor suite to develop and test the tree mapping pipeline proposed in this thesis. The second part presents details of the proposed tree mapping pipeline. Stage one of the mapping pipeline utilizes a deep learning network to detect woody and cylindrical portions of a tree like trunks and branches based on popular semantic segmentation networks. Stage two of the pipeline proposes an algorithm to separate the detected portions of a tree into individual trunk and branch segments. The third stage implements an optimization algorithm to represent each segment parametrically as a cylinder. The fourth stage formulates a multi-sensor factor graph to incrementally integrate and optimize the semantic tree map while also fusing two forms of odometry. Finally, results from all the stages of the tree mapping pipeline using simulation and real-world data are presented. With these implementations, this thesis provides an end-to-end system to estimate tree topology through semantic representations for forestry and precision agriculture applications.
ContributorsVishwanatha, Rakshith (Author) / Das, Jnaneshwar (Thesis advisor) / Martin, Roberta (Committee member) / Throop, Heather (Committee member) / Zhang, Wenlong (Committee member) / Ehsani, Reza (Committee member) / Arizona State University (Publisher)
Created2022
171590-Thumbnail Image.png
Description
Climate change is making the arid southwestern U.S. (“Southwest”) warmer and drier. Decreases in water availability coupled with increases in episodic heat waves can pose extraordinary challenges for native riparian tree species to persist in their current ranges. However, the morpho-physiological mechanisms that these species deploy to cope with extreme

Climate change is making the arid southwestern U.S. (“Southwest”) warmer and drier. Decreases in water availability coupled with increases in episodic heat waves can pose extraordinary challenges for native riparian tree species to persist in their current ranges. However, the morpho-physiological mechanisms that these species deploy to cope with extreme temperature events are not well understood. Specifically, how do these species maintain leaf temperatures within a safe operational threshold in the extreme conditions found across the region? Morpho-physiological mechanisms influencing intraspecific local adaptation to thermal stress were assessed in Populus fremontii using two experimental common gardens. In a common garden located near the mid-point of this species’ thermal distribution, I studied coordinated traits that reflect selection for leaf thermal regulation through the measurement of 28 traits encompassing four different trait spectra: phenology, whole-tree architecture, and the leaf and wood economic spectrum. Also, I assessed how these syndromes resulted in more acquisitive and riskier water-use strategies that explained how warm-adapted populations exhibited lower leaves temperatures than cool-adapted populations. Then, I investigated if different water-use strategies are detectable at inter-annual temporal scales by comparing tree-ring growth, carbon, and oxygen isotopic measurements of cool- versus warm-adapted populations in a common garden located at the extreme hottest edge of P. fremontii’s thermal distribution. I found that P. fremontii’s adaptation to the extreme temperatures is explained by a highly intraspecific specialized trait coordination across multiple trait scales. Furthermore, I found that warmer-adapted populations displayed 39% smaller leaves, 38% higher midday stomatal conductance, reflecting 3.8 °C cooler mean leaf temperature than cool-adapted populations, but with the tradeoff of having 14% lower minimum leaf water potentials. In addition, warm-adapted genotypes at the hot edge of P. fremontii’s distribution had 20% higher radial growth rates, although no differences were detected in either carbon or oxygen isotope ratios indicating that differences in growth may not have reflected seasonal differences in photosynthetic gas exchange. These studies describe the potential effect that extreme climate might have on P. fremontii’s survival, its intraspecific responses to those events, and which traits will be advantageous to cope with those extreme environmental conditions.
ContributorsBlasini, Davis E (Author) / Hultine, Kevin R (Thesis advisor) / Day, Thomas A (Thesis advisor) / Ogle, Kiona (Committee member) / Throop, Heather (Committee member) / Gaxiola, Roberto (Committee member) / Arizona State University (Publisher)
Created2022
171922-Thumbnail Image.png
Description
The southwestern US will experience more frequent heat waves, prolonged droughts, and declining water supply. Riparian ecosystems are particularly at-risk under climate change predictions, but little is known about the thermal tolerance of plant species inhabiting these ecosystems. Populus fremontii, a pioneer and foundation tree species in riparian ecosystems throughout

The southwestern US will experience more frequent heat waves, prolonged droughts, and declining water supply. Riparian ecosystems are particularly at-risk under climate change predictions, but little is known about the thermal tolerance of plant species inhabiting these ecosystems. Populus fremontii, a pioneer and foundation tree species in riparian ecosystems throughout the southwest, is of concern given its importance in driving community structure and influencing ecosystem processes. This study compared leaf thermal tolerance across populations of P. fremontii to determine if local adaptation affects leaf thermal tolerance. I hypothesized that warm-adapted (low-elevation) populations would have larger leaf thermal tolerance thresholds, thermal safety margins, and thermal time constants than cool-adapted (high-elevation) populations. I expected warm-adapted populations to maintain lower maximum leaf temperatures due to local adaptation affecting leaf thermal regulation. Using a common garden at the warm edge of this species’ range, I measured leaf thermal tolerance metrics in eight populations spanning a 1,200 m elevational gradient. Data collection occurred in May, during mild air temperatures, and in August, during high air temperatures. The first two metrics were leaf thermal tolerance thresholds. The critical temperature (Tcrit) is the temperature at which the electron transport capacity of PSII is disrupted. T50 is the temperature at which the electron transport capacity decreases to 50%. The next metric was thermal safety margins (TSMs), which reflect a leaf’s vulnerability to reaching thermal tolerance thresholds. TSMs are the difference between either Tcrit or T50 and an experienced environmental variable such as leaf or air temperature. The last metric was the thermal time constant (?), which is a trait that represents how quickly leaf temperatures respond to changes in air temperatures. Tcrit, T50, and ? were not correlated with elevation regardless of season, suggesting that acclimation or phenotypic plasticity is affecting these metrics. Conversely, TSMs using maximum leaf temperature were negatively correlated with elevation in August because warm-adapted populations maintained lower maximum leaf temperatures. These findings suggest that warm-adapted populations are locally adapted to maintain cooler leaf temperatures, which is critical for their future survival since they do not maintain higher leaf thermal tolerance thresholds than cool-adapted populations.
ContributorsMoran, Madeline (Author) / Hultine, Kevin (Thesis advisor) / Throop, Heather (Thesis advisor) / Butterfield, Bradley (Committee member) / Arizona State University (Publisher)
Created2022
190925-Thumbnail Image.png
Description
Dioecious plants often display sexual segregation in habitat preference and trait expression due to contrasts in reproductive costs. Females may be maladapted to environments with limited available resources, or habitats where resources are diminishing due to climate change. Reduced fitness in female individuals compared to males could lead to skewed

Dioecious plants often display sexual segregation in habitat preference and trait expression due to contrasts in reproductive costs. Females may be maladapted to environments with limited available resources, or habitats where resources are diminishing due to climate change. Reduced fitness in female individuals compared to males could lead to skewed sex ratios and reduce population fitness of dioecious species, including one of the most widely distributed dioecious tree species in North America, Acer negundo. The goal of this study was to evaluate how climate warming and drought may enhance sexual segregation in productivity and physiological stress in A. negundo. To address this goal, I measured radial growth and carbon isotope ratios (δ13C) in tree-ring cellulose of 22-year male and female A. negundo trees growing in a common garden in Salt Lake City, UT. The trees were originally transplanted as one-year old cuttings from a nearby site that was 6.5 °C cooler that the common garden. I hypothesized that 1) δ13C would be lower (more negative) in late growth that is formed during the hottest months of the growing season in males than in females, and during years with no supplemental watering, indicating lower stress from heat and drought in males than in females. And 2) radial growth would be greater in males under warm, well-watered conditions and the addition of drought will exacerbate the difference between males and females. To test these hypotheses, cores were extracted from the main stem of nine male and nine female trees with an increment borer. Annual growth was measured on each core and cellulose was extracted to measure annual δ13C ratios. Males had a 0.63‰ lower mean δ13C than females in years after supplemental water had ceased (p = 0.03) and a 4.12 mm wider radial growth compared to females while irrigated (p = 0.02). Although these data did not support my hypotheses per se, results nevertheless indicate that females are more likely to be maladapted to climate warming and drought to a greater extent than males. If so, a combination of drought and heat stress may have deleterious impacts on the population fitness of Acer negundo and other similar dioecious tree species.
ContributorsChisholm, Mary (Author) / Hultine, Kevin R (Thesis advisor) / Throop, Heather (Thesis advisor) / Morino, Kiyomi (Committee member) / Arizona State University (Publisher)
Created2023
189364-Thumbnail Image.png
Description
Flowering phenology offers a sensitive and reliable biological indicator of climate change because plants use climatic and other environmental cues to initiate flower production. Drylands are the largest terrestrial biome, but with unpredictable precipitation patterns and infertile soils, they are particularly vulnerable to climate change. There is a need to

Flowering phenology offers a sensitive and reliable biological indicator of climate change because plants use climatic and other environmental cues to initiate flower production. Drylands are the largest terrestrial biome, but with unpredictable precipitation patterns and infertile soils, they are particularly vulnerable to climate change. There is a need to increase our comprehension of how dryland plants might respond and adapt to environmental changes. I conducted a meta-analysis on the flowering phenology of dryland plants and showed that some species responded to climate change through accelerated flowering, while others delayed their flowering dates. Dryland plants advanced their mean flowering dates by 2.12 days decade-1, 2.83 days °C-1 and 2.91 days mm-1, respectively, responding to time series, temperature, and precipitation. Flowering phenology responses varied across taxonomic and functional groups, with the grass family Poaceae (-3.91 days decade1) and bulb forming Amaryllidaceae (-0.82 days decade1) showing the highest and lowest time series responses respectively, while Brassicaceae was not responsive. Analysis from herbarium specimens collected across Namibian drylands, spanning 26 species and six families, revealed that plants in hyper-arid to arid regions have lower phenological sensitivity to temperature (-9 days °C-1) and greater phenological responsiveness to precipitation (-0.56 days mm-1) than those in arid to semi-arid regions (-17 days °C-1, -0.35 days mm-1). The flowering phenology of serotinous plants showed greater sensitivity to both temperature and precipitation than that of non-serotinous plants. I used rainout shelters to reduce rainfall in a field experiment and showed that drought treatment advanced the vegetative and reproductive phenology of Cleome gynandra, a highly nutritional and medicinal semi-wild vegetable species. The peak leaf length date, peak number of leaves date, and peak flowering date of Cleome gynandra advanced by six, 10 and seven days, respectively. Lastly, I simulated drought and flood in a greenhouse experiment and found that flooding conditions resulted in higher germination percentage of C. gynandra than drought. My study found that the vegetative, and flowering phenology of dryland plants is responsive to climate change, with differential responses across taxonomic and functional groups, and aridity zones, which could alter the structure and function of these systems.
ContributorsKangombe, Fransiska Ndiiteela (Author) / Throop, Heather (Thesis advisor) / Sala, Osvaldo (Committee member) / Vivoni, Enrique (Committee member) / Pigg, Kathleen (Committee member) / Hultine, Kevin (Committee member) / Kwembeya, Ezekeil (Committee member) / Arizona State University (Publisher)
Created2023
168496-Thumbnail Image.png
Description
Drylands make up more than 45% of the Earth’s land surface and are essential to agriculture and understanding global carbon and elemental cycling. This thesis presents an analysis of atmospheric relative humidity (RH) and temperature (T) as they impact soil moisture and water content at two dryland sites. In particular,

Drylands make up more than 45% of the Earth’s land surface and are essential to agriculture and understanding global carbon and elemental cycling. This thesis presents an analysis of atmospheric relative humidity (RH) and temperature (T) as they impact soil moisture and water content at two dryland sites. In particular, this thesis assesses the likelihood and impact of non-rainfall moisture (NRM) sources on dryland soils. This work also includes a discussion of the development and testing of a novel environmental sensing network, using custom nodes called EarthPods, and recommendations for the collection of future data from dryland sites to better understand NRM events in these regions. An analysis of weather conditions at two drylands sites suggest that nighttime RH is frequently high enough for NRM events to occur. Thesis results were unable to detect changes in soil water content based on historical weather data, likely due to instrument limitations (depth and sensitivity of soil moisture probes) and the small changes in soil moisture during NRM events. However, laboratory tests of EarthPod soil moisture sensors indicated strong sensitivity to T. Characterization of these T sensitivities provide opportunities to calibrate and correct soil moisture estimates using these sensors in the future. This work provides the foundation for larger biogeochemical sampling campaigns focusing on NRM in dryland systems.
ContributorsHanan, Desmond (Author) / Trembath-Reichert, Elizabeth (Thesis advisor) / Das, Jnaneshwar (Committee member) / Throop, Heather (Committee member) / Arizona State University (Publisher)
Created2021
162248-Thumbnail Image.png
Description

Drylands cover almost half of the land surface on Earth, yet there is still little understood of the processes in these ecosystems. This project studied the impact of macroclimate (precipitation and temperature in large regions) in comparison to microclimate (the climate under canopy versus in the open) to learn more

Drylands cover almost half of the land surface on Earth, yet there is still little understood of the processes in these ecosystems. This project studied the impact of macroclimate (precipitation and temperature in large regions) in comparison to microclimate (the climate under canopy versus in the open) to learn more about the drivers of litter decomposition in drylands.

ContributorsMcGroarty, Megan (Author) / Throop, Heather (Thesis director) / Trembath-Reichert, Elizabeth (Committee member) / Reed, Sasha (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Earth and Space Exploration (Contributor) / School of Sustainability (Contributor)
Created2021-12