Matching Items (4)
151783-Thumbnail Image.png
Description
The United Nation's Framework Convention on Climate Change (UNFCCC) recognizes development as a priority for carbon dioxide (CO2) allocation, under its principle of "common but differentiated responsibilities". This was codified in the Kyoto Protocol, which exempt developing nations from binding emission reduction targets. Additionally, they could be the recipients of

The United Nation's Framework Convention on Climate Change (UNFCCC) recognizes development as a priority for carbon dioxide (CO2) allocation, under its principle of "common but differentiated responsibilities". This was codified in the Kyoto Protocol, which exempt developing nations from binding emission reduction targets. Additionally, they could be the recipients of financed sustainable development projects in exchange for emission reduction credits that the developed nations could use to comply with emission targets. Due to ineffective results, post-Kyoto policy discussions indicate a transition towards mitigation commitments from major developed and developing emitters, likely supplemented by market-based mechanisms to reduce mitigation costs. Although the likelihood of achieving substantial emission reductions is increased by the new plan, there is a paucity of consideration to how an ethic of development might be advanced. Therefore, this research empirically investigates the role that CO2 plays in advancing human development (in terms of the Human Development Index or HDI) over the 1990 to 2010 time period. Based on empirical evidence, a theoretical CO2-development framework is established, which provides a basis for designing a novel policy proposal that integrates mitigation efforts with human development objectives. Empirical evidence confirms that CO2 and HDI are highly correlated, but that there are diminishing returns to HDI as per capita CO2 emissions increase. An examination of development pathways reveals that as nations develop, their trajectories generally become less coupled with CO2. Moreover, the developing countries with the greatest gains in HDI are also nations that have, or are in the process of moving toward, outward-oriented trade policies that involve increased domestic capabilities for product manufacture and export. With these findings in mind, future emission targets should reduce current emissions in developed nations and allow room for HDI growth in developing countries as well as in the least developed nations of the world. Emission trading should also be limited to nations with similar HDI levels to protect less-developed nations from unfair competition for capacity building resources. Lastly, developed countries should be incentivized to invest in joint production ventures within the LDCs to build capacity for self-reliant and sustainable development over the long-term.
ContributorsClark, Susan Spierre (Author) / Seager, Thomas P. (Thesis advisor) / Allenby, Braden (Committee member) / Klinsky, Sonja (Committee member) / Arizona State University (Publisher)
Created2013
152839-Thumbnail Image.png
Description
Natural rubber and rubber products can be produced from the guayule plant (Parthenium argentatum Gray), which is a low input perennial shrub native to Mexico and the American Southwest. Guayule rubber has the potential to replace Hevea (Hevea brasiliensis) rubber, the most common natural rubber, and synthetic rubber, which is

Natural rubber and rubber products can be produced from the guayule plant (Parthenium argentatum Gray), which is a low input perennial shrub native to Mexico and the American Southwest. Guayule rubber has the potential to replace Hevea (Hevea brasiliensis) rubber, the most common natural rubber, and synthetic rubber, which is derived from petroleum, in a wide variety of products, including automobile tires. Rubbers make up approximately 47% of the analyzed conventional passenger tire's weight, with 31% from synthetic rubber and 16% from natural Hevea rubber. Replacing the current rubber sources used for the tire industry with guayule rubber could help reduce dependency on imported rubber in addition to reducing greenhouse gas emissions. Moreover, residues from guayule rubber are being researched as a bioenergy feedstock to further improve the environmental footprint of guayule rubber products. This study used life cycle assessment (LCA), a useful tool to determine environmental impacts from a product or process, to quantify and compare environmental impacts of the raw material extraction, transportation and manufacturing of a conventional and a guayule rubber based passenger tire. The impact results of this comparative LCA identified the major environmental impacts and contributing process and informed how the impacts from the tire production can be reduced through utilization of natural rubber co-products as electricity off-sets and reducing guayule rubber's environmental impacts through agricultural and transportation modifications. Results showed that tire raw material extraction contributed the majority of impacts in all categories, where the production of guayule rubber for guayule tires, and the production of synthetic rubber for conventional tires, were the main contributors. Guayule rubber impacts occurred mainly from electricity consumption for agricultural irrigation, while synthetic rubber is a petroleum-based material resulting in high impacts. Transportation impacts had little significance compared to other stages in the life cycle, except for smog impacts, which occurred mainly from truck transport for guayule tires, and transoceanic transport for conventional tires. Tire manufacturing impacts occurred mainly from electricity use in the facilities and were reduced with the use of guayule rubber in guayule tires.
ContributorsRasutis, Daina (Author) / Landis, Amy E. (Thesis advisor) / Colvin, Howard (Committee member) / Seager, Thomas P. (Committee member) / Arizona State University (Publisher)
Created2014
156457-Thumbnail Image.png
Description
Resilience is emerging as the preferred way to improve the protection of infrastructure systems beyond established risk management practices. Massive damages experienced during tragedies like Hurricane Katrina showed that risk analysis is incapable to prevent unforeseen infrastructure failures and shifted expert focus towards resilience to absorb and recover from adverse

Resilience is emerging as the preferred way to improve the protection of infrastructure systems beyond established risk management practices. Massive damages experienced during tragedies like Hurricane Katrina showed that risk analysis is incapable to prevent unforeseen infrastructure failures and shifted expert focus towards resilience to absorb and recover from adverse events. Recent, exponential growth in research is now producing consensus on how to think about infrastructure resilience centered on definitions and models from influential organizations like the US National Academy of Sciences. Despite widespread efforts, massive infrastructure failures in 2017 demonstrate that resilience is still not working, raising the question: Are the ways people think about resilience producing resilient infrastructure systems?



This dissertation argues that established thinking harbors misconceptions about infrastructure systems that diminish attempts to improve their resilience. Widespread efforts based on the current canon focus on improving data analytics, establishing resilience goals, reducing failure probabilities, and measuring cascading losses. Unfortunately, none of these pursuits change the resilience of an infrastructure system, because none of them result in knowledge about how data is used, goals are set, or failures occur. Through the examination of each misconception, this dissertation results in practical, new approaches for infrastructure systems to respond to unforeseen failures via sensing, adapting, and anticipating processes. Specifically, infrastructure resilience is improved by sensing when data analytics include the modeler-in-the-loop, adapting to stress contexts by switching between multiple resilience strategies, and anticipating crisis coordination activities prior to experiencing a failure.

Overall, results demonstrate that current resilience thinking needs to change because it does not differentiate resilience from risk. The majority of research thinks resilience is a property that a system has, like a noun, when resilience is really an action a system does, like a verb. Treating resilience as a noun only strengthens commitment to risk-based practices that do not protect infrastructure from unknown events. Instead, switching to thinking about resilience as a verb overcomes prevalent misconceptions about data, goals, systems, and failures, and may bring a necessary, radical change to the way infrastructure is protected in the future.
ContributorsEisenberg, Daniel Alexander (Author) / Seager, Thomas P. (Thesis advisor) / Park, Jeryang (Thesis advisor) / Alderson, David L. (Committee member) / Lai, Ying-Cheng (Committee member) / Arizona State University (Publisher)
Created2018
136539-Thumbnail Image.png
Description
Engineering education has long sought to incorporate greater diversity into engineering programs to prepare the profession to meet the engineering challenges of society. Increasing or retaining the conative diversity of engineering programs may help extend other kinds of diversity in the profession as well (Marburger, 2004). One measure of conation

Engineering education has long sought to incorporate greater diversity into engineering programs to prepare the profession to meet the engineering challenges of society. Increasing or retaining the conative diversity of engineering programs may help extend other kinds of diversity in the profession as well (Marburger, 2004). One measure of conation is the Kolbe ATM index.
Kolbe ATM is an index developed by Kathy Kolbe to measure the conative traits on an individual. The index assigns each individual a value in four categories, or Action Modes, that indicates their level of insistence on a scale of 1 to 10 in that Action Mode (Kolbe, 2004). The four Action Modes are:

• Fact Finder – handling of information or facts
• Follow Thru – need to pattern or organize
• Quick Start – management of risk or uncertainty
• Implementor – interaction with space or tangibles

The Kolbe A (TM) index assigns each individual a value that indicates their level of insistence with 1-3 representing resistant, preventing problems in a particular Action Mode; 4-6 indicating accommodation, flexibility in a particular Action Mode; and 7-10 indicating insistence in an Action Mode, initiating solutions in that Action Mode (Kolbe, 2004).

To promote retention of conative diversity, this study examines conative diversity in two engineering student populations, a predominately freshmen population at Chandler Gilbert Community College and a predominately junior population at Arizona State University. Students in both population took a survey that asked them to self-report their GPA, satisfaction with required courses in their major, Kolbe ATM conative index, and how much their conative traits help them in each of the classes on the survey. The classes in the survey included two junior level classes at ASU, Engineering Business Practices and Structural Analysis; as well as four freshmen engineering classes, Physics Lecture, Physics Lab, English Composition, and Calculus I.

This study finds that student satisfaction has no meaningful correlation with student GPA.
The study also finds that engineering programs have a dearth of resistant Fact Finders from the freshmen level on and losses resistant Follow Thrus and insistent Quick Starts as time progresses. Students whose conative indices align well with the structure of the engineering program tend to consider their conative traits helpful to them in their engineering studies. Students whose conative indices misalign with the structure of the program report that they consider their strengths less helpful to them in their engineering studies.
This study recommends further research into the relationship between satisfaction with major and conation and into perceived helpfulness of conative traits by students. Educators should continue to use Kolbe A (TM) in the classroom and perform further research on the impacts of conation on diversity in engineering programs.
ContributorsSmith, Logan Farren (Author) / Seager, Thomas P. (Thesis director) / Adams, Elizabeth A. (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2015-05