Matching Items (477)
Filtering by

Clear all filters

162299-Thumbnail Image.png
Description

This research highlights the experiences of mothers diagnosed with preeclampsia and HELLP syndrome through qualitative data analysis of social media comments. I collected 300 comments from the Instagram accounts @preeclampsia.foundation and @HELLPsyndrome. The two overarching themes found were: (1) Experiences with maternal healthcare and (2) Virtual Healing Spaces. These Instagram

This research highlights the experiences of mothers diagnosed with preeclampsia and HELLP syndrome through qualitative data analysis of social media comments. I collected 300 comments from the Instagram accounts @preeclampsia.foundation and @HELLPsyndrome. The two overarching themes found were: (1) Experiences with maternal healthcare and (2) Virtual Healing Spaces. These Instagram accounts represented unique communities that provide support and information that cannot be found elsewhere. These findings address gaps in the literature on maternal experience with preeclampsia and HELLP syndrome and identify directions for further research. The conclusions drawn add to current research that points to the need for reform in maternal healthcare.

ContributorsWhipple, Teagan (Author) / Haskin, Jennifer (Thesis director) / Ingram-Waters, Mary (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor) / School of Human Evolution & Social Change (Contributor)
Created2021-12
166358-Thumbnail Image.png
Description

Hybrid metalloproteins incorporating synthetic organometallic active sites within a protein scaffold are being researched as viable catalysts for the production of hydrogen fuel. Our group and others have shown that the incorporation of cobalt protoporphyrin IX in cytochrome b₅₆₂ yields artificial enzymes that reduce protons to molecular hydrogen in the

Hybrid metalloproteins incorporating synthetic organometallic active sites within a protein scaffold are being researched as viable catalysts for the production of hydrogen fuel. Our group and others have shown that the incorporation of cobalt protoporphyrin IX in cytochrome b₅₆₂ yields artificial enzymes that reduce protons to molecular hydrogen in the presence of photoinductive light and photosensitizers. Using random mutagenesis via error-prone PCR we have created a library of mutants to use in directed evolution to optimize hydrogen catalysis, though a challenge in this project is that testing individual variants by gas chromatography is not feasible on a large scale. For this reason, we are developing a gasochromic, hydrogen assay that is based on the interaction of molecular hydrogen with tungsten trioxide with a palladium catalyst. Initially, results show this assay to be qualitatively accurate between trials; however, its application in screening remains a challenge.

ContributorsGutierrez, Elijah (Author) / Ghirlanda, Giovana (Thesis director) / Mills, Jeremy (Committee member) / Redding, Kevin (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor)
Created2022-05
166650-Thumbnail Image.png
Description
Threats to critical infrastructure are increasing, especially within the water industry. The purpose of this study was to evaluate the history of water attacks within the United States, determine the vulnerabilities, examine current and future methods of attack, and identify potential trends. Risk assessments of the water supply systems were

Threats to critical infrastructure are increasing, especially within the water industry. The purpose of this study was to evaluate the history of water attacks within the United States, determine the vulnerabilities, examine current and future methods of attack, and identify potential trends. Risk assessments of the water supply systems were evaluated based on threats, vulnerabilities, and consequences according to the 4 attack methods: physical, cyber, biological, and chemical. Each attack method was given a comprehensive background in the context of historical evidence, vulnerabilities, prevention, and response to a potential attack. In analyzing the risk assessment of water supply systems, it was determined that a majority of the vulnerabilities are due to outdated equipment or structure failure. Additionally, the increase in cyber-attacks worldwide signals a threat the U.S. is unprepared for. Therefore, physical, cyber, biological, and chemical attacks can be best mitigated through prevention and detection. Some prevention methods include establishing emergency protocols, training employees in risk management, and running emergency simulations.
ContributorsBove, Madison (Author) / Boyer, Treavor (Thesis director) / Richard, Rain (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor) / School of Politics and Global Studies (Contributor)
Created2022-05
166424-Thumbnail Image.png
Description
Bet Fitness aims to assist its users in forging consistent fitness routines for a lifetime of health, and it encourages people to exercise by having a group of participants set a collective fitness goal and involving them in a friendly competition where groups of friends motivate and support each other’s

Bet Fitness aims to assist its users in forging consistent fitness routines for a lifetime of health, and it encourages people to exercise by having a group of participants set a collective fitness goal and involving them in a friendly competition where groups of friends motivate and support each other’s fitness journeys.
ContributorsDeMent, Clare (Author) / Semadeni, Nathanael (Co-author) / Potts, Maddie (Co-author) / Wang, Shiyuan (Co-author) / Byrne, Jared (Thesis director) / Lee, Christopher (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor)
Created2022-05
162274-Thumbnail Image.png
Description

U.S. border colonias, otherwise known as Disadvantaged Unincorporated Communities, are rural settlements along the U.S. Mexico border with substandard housing conditions. Colonia residents often face inadequate access to necessities such as appropriate shelter, septic and sewer systems, and potable water. Water insecurity in colonias poses a particularly difficult challenge for

U.S. border colonias, otherwise known as Disadvantaged Unincorporated Communities, are rural settlements along the U.S. Mexico border with substandard housing conditions. Colonia residents often face inadequate access to necessities such as appropriate shelter, septic and sewer systems, and potable water. Water insecurity in colonias poses a particularly difficult challenge for residents who require clean water not only for consumption, but also household use in sanitation and hygienic practices. As of 2015, an estimated 30% of over five million US colonia residents lack access to clean drinking water, resulting in health complications and unsanitary living conditions. Preliminary health data collected indicates that due to water insecurity, colonia residents are more likely to contract gastrointestinal disease, be exposed to carcinogenic compounds from contaminated water, and experience psychosocial distress. Yet more comprehensive research needs to be conducted to understand the full breadth of the public health issue. A scoping review on water insecurity in colonias has not been completed before and could be beneficial in informing policymakers and other stakeholders on the severity of the situation while advising possible solutions.

ContributorsZheng, Madeleine (Author) / Wutich, Amber (Thesis director) / Brewis, Alexandra (Committee member) / Kavouras, Stavros (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor) / School of International Letters and Cultures (Contributor)
Created2021-12
Description

Polyketides are a wide ranging class of natural microbial products highly relevant to the pharmacological industry. As chemical synthesis of polyketides is quite challenging, significant effort has been made to understand the polyketide synthases (PKSs) responsible for their natural production. Native to Streptomyces, the aln biosynthetic gene cluster was recently

Polyketides are a wide ranging class of natural microbial products highly relevant to the pharmacological industry. As chemical synthesis of polyketides is quite challenging, significant effort has been made to understand the polyketide synthases (PKSs) responsible for their natural production. Native to Streptomyces, the aln biosynthetic gene cluster was recently characterized and encodes for an iterative type I polyketide synthase (iT1PKS). This iT1PKS produces both , and ,-double bond polyketides named allenomycins; however, the basis in which one bond is chosen over the other is not yet clear. The dehydratase domain, AlnB_DH, is thought to be solely responsible for catalyzing double bond formation. Elucidation of enzyme programming is the first step towards reprogramming AlnB_DH to produce novel industrially relevant products. The Nannenga lab has worked as collaborators to the Zhao lab at the University of Illinois at Urbana-Champaign to unravel AlnB_DH’s structure and mechanism. Here, mutant constructs of AlnB_DH are developed to elucidate enzyme structure and provide insight into active site machinery. The primary focus of this work is on the development of the mutant constructs themselves rather than the methods used for structural or mechanistic determination. Truncated constructs were successfully developed for crystallization and upon x-ray diffraction, a 2.45 Å resolution structure was determined. Point-mutated constructs were then developed based on structural insights, which identified H49, P58, and H62 as critical residues in active site machinery.

ContributorsBlackson, Wyatt (Author) / Nannenga, Brent (Thesis director) / Nielsen, David (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05
Description

This paper presents a comprehensive review of current advances and challenges in the field of bone tissue engineering. A systematic review of the literature was conducted to identify recent developments in biomaterials, scaffold design, cell sources, and growth factors for bone tissue engineering applications. Based on this review, an experimental

This paper presents a comprehensive review of current advances and challenges in the field of bone tissue engineering. A systematic review of the literature was conducted to identify recent developments in biomaterials, scaffold design, cell sources, and growth factors for bone tissue engineering applications. Based on this review, an experimental proposal is presented for the development of porous composite biomaterials that may enhance bone regeneration, which consist of hybrid amyloid/spidroin fibers combined with a bioactive ceramic matrix. An iterative design process of modeling and simulation, production, and characterization of both the fibers and the composite material is proposed. A modeling and simulation approach is also presented for unidirectional fiber composite biomaterials using 2-point correlation functions, finite element simulations, and machine learning. This approach was demonstrated to enable the efficient and accurate prediction of the effective Young’s modulus of candidate composite biomaterials, which can inform the design of optimized materials for bone tissue engineering applications. The proposed experimental and simulation approaches have the potential to address current challenges and lead to the development of novel composite biomaterials that can augment the current technologies in the field of bone tissue engineering.

ContributorsThornton, Bryce (Author) / Hartwell, Leland (Thesis director) / Jiao, Yang (Committee member) / Susarla, Sandhya (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05
Description

Alzheimer’s disease (AD) is a devastating disorder that affects the lives of both patients and their loved ones. While it is believed that AD is due to a buildup of amyloid plaques in the brain that eventually lead to the formation of neurofibrillary tangles (NFTs) and result in neurodegeneration, there

Alzheimer’s disease (AD) is a devastating disorder that affects the lives of both patients and their loved ones. While it is believed that AD is due to a buildup of amyloid plaques in the brain that eventually lead to the formation of neurofibrillary tangles (NFTs) and result in neurodegeneration, there are many theories that attempt to define the causes of AD. This paper investigates the amyloid and tau theories in more detail, including how these proteins can spread in the brain. It will also take a look into other potential theories that could contribute to AD symptoms such as vascular issues or neuroinflammation. Frontotemporal dementia (FTD) is another form of dementia, albeit much rarer than AD, that is typically characterized by symptoms that follow the opposite progression of AD: behavior and judgement are affected before memory. In addition, FTD is closely related to amyotrophic lateral sclerosis (ALS), a movement disorder that is caused by a loss of motor neurons that results in loss of muscle control. This paper will also examine how FTD and ALS are related, as well as theories behind the potential causes of these disorders. Finally, this paper will examine a patient who exhibits signs and symptoms of both disorders to attempt to determine the potential diagnosis.

ContributorsYeturu, Sree Neha (Author) / Velazquez, Ramon (Thesis director) / Duane, Drake (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05
Description

The COVID-19 pandemic has renewed interest in the importance of indoor air quality for health. The spread of respiratory aerosols is the primary mechanism for COVID-19 transmission, making it crucial to understand the role of effective ventilation in managing the risk of disease transmission. The concentration of exhaled carbon dioxide

The COVID-19 pandemic has renewed interest in the importance of indoor air quality for health. The spread of respiratory aerosols is the primary mechanism for COVID-19 transmission, making it crucial to understand the role of effective ventilation in managing the risk of disease transmission. The concentration of exhaled carbon dioxide (CO2) in indoor spaces can be used as a proxy measure of ventilation efficiency. Poor indoor air quality has been associated with a range of acute and chronic health problems, including respiratory issues, cardiovascular disease, and cancer. Poor air quality may also impair cognitive performance and productivity. Social and economic inequalities exacerbate the impact of indoor air quality issues, making it crucial to address these problems in an equitable manner. Public libraries have been identified as an effective intermediary for providing education and free air quality monitoring technology to communities, with the ultimate goal of promoting awareness and increasing access to tools to promote accountability for maintaining high indoor air quality standards. The primary objectives of this initiative are to: 1) develop a citizen science toolkit for assessing indoor air quality in public spaces and deploy the toolkit to public libraries in Arizona; and 2) to conduct a program evaluation to determine whether this kit can be effectively deployed through public libraries to promote citizen science efforts and engage community members in promoting healthier indoor air quality, identify areas where improvements can be made, and prepare the program to be scaled to a larger audience.

ContributorsYoung, Parker (Author) / Jehn, Megan (Thesis director) / Cavalier, Darlene (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor) / School of International Letters and Cultures (Contributor)
Created2023-05
185116-Thumbnail Image.png
Description

CRISPR-Cas based DNA precision genome editing tools such as DNA Adenine Base Editors (ABEs) could remedy the majority of human genetic diseases caused by point mutations (aka Single Nucleotide Polymorphisms, SNPs). ABEs were designed by fusing CRISPR-Cas9 and DNA deaminating enzymes. Since there is no natural enzyme able to deaminate

CRISPR-Cas based DNA precision genome editing tools such as DNA Adenine Base Editors (ABEs) could remedy the majority of human genetic diseases caused by point mutations (aka Single Nucleotide Polymorphisms, SNPs). ABEs were designed by fusing CRISPR-Cas9 and DNA deaminating enzymes. Since there is no natural enzyme able to deaminate adenosine in DNA, the deaminase domain of ABE was evolved from an Escherichia coli tRNA deaminase, EcTadA. Initial rounds of directed evolution resulted in ABE7.10 enzyme (which contains two deaminases EcTadA and TadA7.10 fused to Cas9) which was further evolved to ABE8e containing a single TadA8e and Cas9. The original EcTadA as well as the evolved TadA8e where shown to form homodimers in solution. Although it was shown that tRNA binding pocket in EcTadA is composed by both monomers, the significance of TadA dimerization in either tRNA or DNA deamination has not been demonstrated. Here we explore the role of TadA dimerization on the DNA adenosine deamination activity of ABE8e. We hypothesize that the dimerization of TadA8e is more important for the DNA deamination than for the tRNA deamination. To explore this, I conducted a urea titration on ABE8e to disrupt TadA8e dimerization and performed single turnover kinetics assays to assess DNA deamination rate of ABE8e’s. Results showed that DNA deamination rate and efficiency of ABE8e was already impaired at 4M urea and completely lost at 7M. Unfortunately, CD measurements at the equivalent urea concentrations indicate that the loss of activity is due to the unfolding of ABE8e rather than the disruption of TadA8e’s dimerization.

ContributorsBennett, Marisa (Author) / Lapinaite, Audrone (Thesis director) / Mills, Jeremy (Committee member) / Stephanopolous, Nicholas (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05