Matching Items (4)
132188-Thumbnail Image.png
Description
Stromal cells play an important role in facilitating disease progression of ductal carcinoma. Cancer associated fibroblasts (CAFs) are an important component of the extracellular matrix (ECM) which constitutes the microenvironment of breast tumor cells. They are known to participate in chemotherapeutic drug resistance by modulating various biochemical and biophysical factors

Stromal cells play an important role in facilitating disease progression of ductal carcinoma. Cancer associated fibroblasts (CAFs) are an important component of the extracellular matrix (ECM) which constitutes the microenvironment of breast tumor cells. They are known to participate in chemotherapeutic drug resistance by modulating various biochemical and biophysical factors that contribute to increased matrix stiffness and collagen I density of the tumor-adjacent stroma. To address these issues in terms of patient treatment, anti-cancer drug regimes have been assembled to incorporate both chemotherapeutic as well as anti-fibrotic drugs to both target tumor cells while also diminishing the elastic modulus of the microenvironment by targeting CAFs. The quantitative assessment of these drug regimes on tumor progression is missing in terms of CAFs role alone.

A high density 3D tumor model was utilized to recapitulate the tumor microenvironment of ductal carcinoma in vitro. The tumor model consisted of MDA-MB-231 tumors seeded within micromolded collagen wells, chemically immobilized upon a surface treated PDMS substrate. CAFs were seeded within the greater collagen structure from which the microwells were formed. The combinatorial effect of anti-fibrotic drug (Tranilast) and chemotherapy drug (Doxorubicin) were studied within 3D co culture conditions. Specifically, the combinatorial effects of the drugs on tumor cell viability, proliferation, and invasion were examined dynamically upon coculture with CAFs using the microengineered model.

The results of the study showed that the combinatorial effects of Tranilast and Doxorubicin significantly decreased the proliferative ability of tumor cells, in addition to significantly decreasing the ability of tumor cells to remain viable and invade their surrounding stroma, compared to control conditions.
ContributorsSilva, Casey Rudolph (Author) / Nikkhah, Mehdi (Thesis director) / Saini, Harpinder (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134306-Thumbnail Image.png
Description
The objective of this research was to create a 3D in vitro model to mimic the native breast tumor microenvironment. Polydimethylsiloxane (PDMS) stamps and micromolding techniques were utilized to develop collagen based 3D tumor model. Geometrical design was optimized for the PDMS stamp to compartmentalize the tumor and stromal region

The objective of this research was to create a 3D in vitro model to mimic the native breast tumor microenvironment. Polydimethylsiloxane (PDMS) stamps and micromolding techniques were utilized to develop collagen based 3D tumor model. Geometrical design was optimized for the PDMS stamp to compartmentalize the tumor and stromal region of the 3D model. Addition of tumor and stromal cells into the platform further demonstrated the successful fabrication of the 3D model which will be used to investigate the role of stromal components on tumor growth and progression. Atomic force microscopy will also be utilized to access stromal remodeling during active invasion.
ContributorsAssefa, Eyerusalem Dibaba (Author) / Nikkhah, Mehdi (Thesis director) / Saini, Harpinder (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
Description
Cardiac tissue engineering has major applications in regenerative medicine, disease modeling and fundamental biological studies. Despite the significance, numerous questions still need to be explored to enhance the functionalities of the engineered tissue substitutes. In this study, three dimensional (3D) cardiac micro-tissues were developed through encapsulating co-culture of cardiomyocytes and

Cardiac tissue engineering has major applications in regenerative medicine, disease modeling and fundamental biological studies. Despite the significance, numerous questions still need to be explored to enhance the functionalities of the engineered tissue substitutes. In this study, three dimensional (3D) cardiac micro-tissues were developed through encapsulating co-culture of cardiomyocytes and cardiac fibroblasts, as the main cellular components of native myocardium, within photocrosslinkable gelatin-based hydrogels. Different co-culture ratios were assessed to optimize the functional properties of constructs. The geometry of the micro-tissues was precisely controlled using micro-patterning techniques in order to evaluate their role on synchronous contraction of the cells. Cardiomyocytes exhibited a native-like phenotype when co-cultured with cardiac fibroblasts as compared to the mono-culture condition. Particularly, elongated F-actin fibers with abundance of sarcomeric α-actinin and troponin-I were observed within all layers of the hydrogel constructs. Higher expressions of connexin-43 and integrin β1 indicated improved cell-cell and cell-matrix interactions. Amongst co-culture conditions, 2:1 (cardiomyocytes: cardiac fibroblasts) ratio exhibited enhanced functionalities, whereas decreasing the construct size adversely affected the synchronous contraction of the cells. Therefore, this study indicated that cell-cell ratio as well as the geometrical features of the micropatterned constructs are among crucial parameters, which need to be optimized in order to enhance the functionalities of engineered tissue substitutes and cardiac patches.
ContributorsSaini, Harpinder (Author) / Nikkhah, Mehdi (Thesis advisor) / Vernon, Brent (Committee member) / Towe, Bruce (Committee member) / Arizona State University (Publisher)
Created2015
Description
Solid tumors advance from benign stage to a deadly metastatic state due to the complex interaction between cancer cells and tumor microenvironment (TME) including stromal cells and extracellular matrix (ECM). Multiple studies have demonstrated that ECM dysregulation is one of the critical hallmarks of cancer progression leading to formation of

Solid tumors advance from benign stage to a deadly metastatic state due to the complex interaction between cancer cells and tumor microenvironment (TME) including stromal cells and extracellular matrix (ECM). Multiple studies have demonstrated that ECM dysregulation is one of the critical hallmarks of cancer progression leading to formation of a desmoplastic microenvironment that participates in tumor progression. Cancer associated fibroblasts (CAFs) are the predominant stromal cell type that participates in desmoplasia by depositing matrix proteins and increasing ECM stiffness. Although the influence of matrix stiffness on enhanced tumorigenicity has been well studied, the biological understanding about the dynamic changes in ECM architecture and the role of cancer-stromal cell interaction on ECM remodeling is still limited.

In this dissertation, the primary goal was to develop a comprehensive cellular and molecular level understanding of ECM remodeling due to the interaction of breast tumor cells and CAFs. To that end, a novel three-dimensional (3D) high-density tumor-stroma model was fabricated in which breast tumor cells (MDA-MB-231 and MCF7) were spatially organized surrounded by CAF-embedded collagen-I hydrogel (Aim 1). Further the platform was integrated with atomic force microscopy to assess the dynamic changes in ECM composition and stiffness during active tumor invasion. The results established an essential role of crosstalk between breast tumor cells and CAFs in ECM remodeling. The studies were further extended by dissecting the mode of interaction between tumor cells and CAFs followed by characterization of the role of various tumor secreted factors on ECM remodeling (Aim 2). The results for the first time established a critical role of paracrine signaling between breast tumor cells and CAFs in modulating biophysical properties of ECM. More in-depth analysis highlighted the role of tumor secreted cytokines, specifically PDGF-AA/BB, on CAF-induced desmoplasia. In aim 3, the platform was further utilized to test the synergistic influence of anti-fibrotic drug (tranilast) in conjugation with chemotherapeutic drug (Doxorubicin) on desmoplasia and tumor progression in the presence of CAFs. Overall this dissertation provided an in-depth understanding on the impact of breast cancer-stromal cell interaction in modulating biophysical properties of the ECM and identified the crucial role of tumor secreted cytokines including PDGF-AA/BB on desmoplasia.
ContributorsSaini, Harpinder (Author) / Nikkhah, Mehdi (Thesis advisor) / Ros, Robert (Committee member) / LaBaer, Joshua (Committee member) / Kodibagkar, Vikram (Committee member) / Ebrahimkhani, Mohammad (Committee member) / Arizona State University (Publisher)
Created2019