Matching Items (26)
153348-Thumbnail Image.png
Description
This research develops heuristics for scheduling electric power production amid uncertainty. Reliability is becoming more difficult to manage due to growing uncertainty from renewable resources. This challenge is compounded by the risk of resource outages, which can occur any time and without warning. Stochastic optimization is a promising tool but

This research develops heuristics for scheduling electric power production amid uncertainty. Reliability is becoming more difficult to manage due to growing uncertainty from renewable resources. This challenge is compounded by the risk of resource outages, which can occur any time and without warning. Stochastic optimization is a promising tool but remains computationally intractable for large systems. The models used in industry instead schedule for the forecast and withhold generation reserve for scenario response, but they are blind to how this reserve may be constrained by network congestion. This dissertation investigates more effective heuristics to improve economics and reliability in power systems where congestion is a concern.

Two general approaches are developed. Both approximate the effects of recourse decisions without actually solving a stochastic model. The first approach procures more reserve whenever approximate recourse policies stress the transmission network. The second approach procures reserve at prime locations by generalizing the existing practice of reserve disqualification. The latter approach is applied for feasibility and is later extended to limit scenario costs. Testing demonstrates expected cost improvements around 0.5%-1.0% for the IEEE 73-bus test case, which can translate to millions of dollars per year even for modest systems. The heuristics developed in this dissertation perform somewhere between established deterministic and stochastic models: providing an economic benefit over current practices without substantially increasing computational times.
ContributorsLyon, Joshua Daniel (Author) / Zhang, Muhong (Thesis advisor) / Hedman, Kory W (Thesis advisor) / Askin, Ronald G. (Committee member) / Mirchandani, Pitu (Committee member) / Arizona State University (Publisher)
Created2015
152865-Thumbnail Image.png
Description
As global energy demand has dramatically increased and traditional fossil fuels will be depleted in the foreseeable future, clean and unlimited renewable energies are recognized as the future global energy challenge solution. Today, the power grid in U.S. is building more and more renewable energies like wind and solar, while

As global energy demand has dramatically increased and traditional fossil fuels will be depleted in the foreseeable future, clean and unlimited renewable energies are recognized as the future global energy challenge solution. Today, the power grid in U.S. is building more and more renewable energies like wind and solar, while the electric power system faces new challenges from rapid growing percentage of wind and solar. Unlike combustion generators, intermittency and uncertainty are the inherent features of wind and solar. These features bring a big challenge to the stability of modern electric power grid, especially for a small scale power grid with wind and solar. In order to deal with the intermittency and uncertainty of wind and solar, energy storage systems are considered as one solution to mitigate the fluctuation of wind and solar by smoothing their power outputs. For many different types of energy storage systems, this thesis studied the operation of battery energy storage systems (BESS) in power systems and analyzed the benefits of the BESS. Unlike many researchers assuming fixed utilization patterns for BESS and calculating the benefits, this thesis found the BESS utilization patterns and benefits through an investment planning model. Furthermore, a cost is given for utilizing BESS and to find the best way of operating BESS rather than set an upper bound and a lower bound for BESS energy levels. Two planning models are proposed in this thesis and preliminary conclusions are derived from simulation results. This work is organized as below: chapter 1 briefly introduces the background of this research; chapter 2 gives an overview of previous related work in this area; the main work of this thesis is put in chapter 3 and chapter 4 contains the generic BESS model and the investment planning model; the following chapter 5 includes the simulation and results analysis of this research and chapter 6 provides the conclusions from chapter 5.
ContributorsDai, Daihong (Author) / Hedman, Kory W (Thesis advisor) / Zhang, Muhong (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2014
153603-Thumbnail Image.png
Description
Corrective transmission topology control schemes are an essential part of grid operations and are used to improve the reliability of the grid as well as the operational efficiency. However, topology control schemes are frequently established based on the operator's past knowledge of the system as well as other ad-hoc methods.

Corrective transmission topology control schemes are an essential part of grid operations and are used to improve the reliability of the grid as well as the operational efficiency. However, topology control schemes are frequently established based on the operator's past knowledge of the system as well as other ad-hoc methods. This research presents robust corrective topology control, which is a transmission switching methodology used for system reliability as well as to facilitate renewable integration.

This research presents three topology control (corrective transmission switching) methodologies along with the detailed formulation of robust corrective switching. The robust model can be solved off-line to suggest switching actions that can be used in a dynamic security assessment tool in real-time. The proposed robust topology control algorithm can also generate multiple corrective switching actions for a particular contingency. The solution obtained from the robust topology control algorithm is guaranteed to be feasible for the entire uncertainty set, i.e., a range of system operating states.

Furthermore, this research extends the benefits of robust corrective topology control to renewable resource integration. In recent years, the penetration of renewable resources in electrical power systems has increased. These renewable resources add more complexities to power system operations, due to their intermittent nature. This research presents robust corrective topology control as a congestion management tool to manage power flows and the associated renewable uncertainty. The proposed day-ahead method determines the maximum uncertainty in renewable resources in terms of do-not-exceed limits combined with corrective topology control. The results obtained from the topology control algorithm are tested for system stability and AC feasibility.

The scalability of do-not-exceed limits problem, from a smaller test case to a realistic test case, is also addressed in this research. The do-not-exceed limit problem is simplified by proposing a zonal do-not-exceed limit formulation over a detailed nodal do-not-exceed limit formulation. The simulation results show that the zonal approach is capable of addressing scalability of the do-not-exceed limit problem for a realistic test case.
ContributorsKorad, Akshay Shashikumar (Author) / Hedman, Kory W (Thesis advisor) / Ayyanar, Raja (Committee member) / Vittal, Vijay (Committee member) / Zhang, Muhong (Committee member) / Arizona State University (Publisher)
Created2015
155128-Thumbnail Image.png
Description
This dissertation carries out an inter-disciplinary research of operations research, statistics, power system engineering, and economics. Specifically, this dissertation focuses on a special power system scheduling problem, a unit commitment problem with uncertainty. This scheduling problem is a two-stage decision problem. In the first stage, system operator determines the binary

This dissertation carries out an inter-disciplinary research of operations research, statistics, power system engineering, and economics. Specifically, this dissertation focuses on a special power system scheduling problem, a unit commitment problem with uncertainty. This scheduling problem is a two-stage decision problem. In the first stage, system operator determines the binary commitment status (on or off) of generators in advance. In the second stage, after the realization of uncertainty, the system operator determines generation levels of the generators. The goal of this dissertation is to develop computationally-tractable methodologies and algorithms to solve large-scale unit commitment problems with uncertainty.

In the first part of this dissertation, two-stage models are studied to solve the problem. Two solution methods are studied and improved: stochastic programming and robust optimization. A scenario-based progressive hedging decomposition algorithm is applied. Several new hedging mechanisms and parameter selections rules are proposed and tested. A data-driven uncertainty set is proposed to improve the performance of robust optimization.

In the second part of this dissertation, a framework to reduce the two-stage stochastic program to a single-stage deterministic formulation is proposed. Most computation of the proposed approach can be done by offline studies. With the assistance of offline analysis, simulation, and data mining, the unit commitment problems with uncertainty can be solved efficiently.

Finally, the impacts of uncertainty on energy market prices are studied. A new component of locational marginal price, a marginal security component, which is the weighted shadow prices of the proposed security constraints, is proposed to better represent energy prices.
ContributorsLi, Chao (Author) / Hedman, Kory W (Thesis advisor) / Zhang, Muhong (Thesis advisor) / Mirchandani, Pitu B. (Committee member) / Wu, Teresa (Committee member) / Arizona State University (Publisher)
Created2016
129383-Thumbnail Image.png
Description

Reserve requirements promote reliability by ensuring resources are available to rebalance the power system following random disturbances. However, reliability is not guaranteed when dispatch is limited by transmission constraints. In this work, we propose a modified form of reserve requirement that identifies response sets for distinct contingency scenarios. The approach

Reserve requirements promote reliability by ensuring resources are available to rebalance the power system following random disturbances. However, reliability is not guaranteed when dispatch is limited by transmission constraints. In this work, we propose a modified form of reserve requirement that identifies response sets for distinct contingency scenarios. The approach disqualifies reserve from counting towards a particular scenario if transmission constraints are likely to render that reserve undeliverable. A decomposition algorithm for security-constrained unit commitment dynamically updates the response sets to address changing conditions. Testing on the RTS 96 test case demonstrates the approach applied in tandem with existing reserve policies to avoid situations where reserve is not deliverable due to transmission constraints. Operational implications of the proposed method are discussed.

ContributorsLyon, Joshua (Author) / Zhang, Muhong (Author) / Hedman, Kory (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-01-01
129203-Thumbnail Image.png
Description

In order to process a product in a semiconductor back-end facility, a machine needs to be qualified, first by having product-specific software installed and then running test wafers through it to verify that the machine is capable of performing the process correctly. In general, not all machines are qualified to

In order to process a product in a semiconductor back-end facility, a machine needs to be qualified, first by having product-specific software installed and then running test wafers through it to verify that the machine is capable of performing the process correctly. In general, not all machines are qualified to process all products due to the high machine qualification cost and tool set availability. The machine qualification decision affects future capacity allocation in the facility and subsequently affects daily production schedules. To balance the tradeoff between current machine qualification costs and future potential backorder costs due to not enough machines qualified with uncertain demand, a stochastic product–machine qualification optimization model is proposed in this article. The L-shaped method and acceleration techniques are proposed to solve the stochastic model. Computational results are provided to show the necessity of the stochastic model and the performance of different solution methods.

ContributorsFu, Mengying (Author) / Askin, Ronald (Author) / Fowler, John (Author) / Zhang, Muhong (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-07-03