Matching Items (7)
147574-Thumbnail Image.png
Description

The experimental assessment of cracking distresses in asphalt concrete pavements is crucial to the longevity of pavements. As such, fracture parameters obtained from experiments play a key role in facilitating the use of fracture mechanics theories and prediction of cracking distresses in asphalt concrete (AC) pavements. The stress intensity

The experimental assessment of cracking distresses in asphalt concrete pavements is crucial to the longevity of pavements. As such, fracture parameters obtained from experiments play a key role in facilitating the use of fracture mechanics theories and prediction of cracking distresses in asphalt concrete (AC) pavements. The stress intensity factor (SIF) is among the fracture parameters derived from fracture mechanics theory. Many fracture mechanics based laboratory tests have been developed with the goal of calculating such key fracture parameters. The C* Fracture test is unique among them because it incorporates rate dependent loading into the calculation of fracture parameters via the theory of the C* Line integral. However, unlike other laboratory fracture tests, the C* Fracture test does not have any analytical solution or previous sources from literature which describe geometric shape factors used in the calculation of SIFs. Numerical modeling of the C* Fracture test specimen is also limited in literature. Therefore, there is a need for a high-fidelity numerical model of this fracture test in order to develop SIF functions. In this thesis, the numerical models of the C* Fracture test were developed using the Generalized Finite Element Method (GFEM). GFEM is particularly effective at modeling problems with discontinuities in complex 3-D structures. The use of the GFEM to solve this problem allows a high-fidelity numerical model to be created without a large computational cost and labor intensive mesh crafting. After verifying the model accuracy using convergence analysis, the specimen geometry was modeled by changing the crack size. A SIF function was developed that includes a specific geometry dependent shape factor for the C* Fracture test based on Linear Elastic Fracture Mechanics (LEFM).

ContributorsSudhakar, Aditya (Author) / Ozer, Hasan (Thesis director) / Rajan, Subramaniam (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
168476-Thumbnail Image.png
Description
Differences in climatic conditions, aircraft traffic, and maintenance practices drive airfield pavements to perform differently. Through the Federal Aviation Administration’s (FAA’s) PAVEAIR online database and the National Oceanic and Atmospheric Administration’s (NOAA’s) online public platform, historical pavement condition and climate data from nearly 200 airfields in the dry freeze (DF),

Differences in climatic conditions, aircraft traffic, and maintenance practices drive airfield pavements to perform differently. Through the Federal Aviation Administration’s (FAA’s) PAVEAIR online database and the National Oceanic and Atmospheric Administration’s (NOAA’s) online public platform, historical pavement condition and climate data from nearly 200 airfields in the dry freeze (DF), dry no-freeze (DNF), wet freeze (WF), and wet no-freeze (WNF) climatic regions were collected to evaluate pavement performance and distress trends. This research details the methodologies employed in the PAVEAIR pavement inspection data retrieval and dataset organization, and further presents the results of a two-part analysis. First, rate of deterioration (ROD) of various pavement families were evaluated by fitting a linear regression to the pavement condition index (PCI). Then, historical distresses data were analyzed for various pavement families in the different climatic regions. Families were assigned with respect to climate, pavement structure (conventional asphalt or asphalt overlays), and branch type (apron, taxiway, and runway). The regression results showed that pavements in the WF region have the highest ROD, followed by the pavements in the DNF region. In terms of branch type, in three of four climatic regions, aprons have the fastest rate of deterioration, followed by taxiways and runways, respectively. The distress analytics revealed that cracking type of distresses were the most common in all the regions regardless of the pavement family. The results showed that climatic data alone were not adequate to characterize airfield pavement behavior due to the multivariate factors affecting pavement deterioration. An accurate pavement and distress prediction modeling effort should at least include additional information on the structure and traffic level.
ContributorsDuah, Ebenezer (Author) / Ozer, Hasan (Thesis advisor) / Kaloush, Kamil E (Committee member) / Mamlouk, Michael S (Committee member) / Arizona State University (Publisher)
Created2021
Description
Thin overlays are favored by local agencies due to their ability to extend the pavement'slifespan and enhance ride quality. However, the low thickness of thin overlays presents some inherent challenges. The use of conventional mixes for constructing thin overlays has led to numerous premature failures, primarily due to the relationship between compaction, the

Thin overlays are favored by local agencies due to their ability to extend the pavement'slifespan and enhance ride quality. However, the low thickness of thin overlays presents some inherent challenges. The use of conventional mixes for constructing thin overlays has led to numerous premature failures, primarily due to the relationship between compaction, the Nominal Maximum Aggregate Size (NMAS), and lift thickness. The current study's objective was to utilize a balanced mix design to enhance the quality of mixes used by local agencies by developing two new dense-graded mixes and one Stone Matrix Asphalt (SMA) mix. Local mixes were collected and studied, working closely with industry experts. This research work aimed to identify the performance characteristics of commonly used mixes, optimize these mixes, and design new mixes that better suit their intended application, thereby prolonging the life of overlays. The findings indicated that while the current mix designs are fundamentally wellstructured, they are not appropriate for the given application due to the unsuitability of a 12.5 mm NMAS for mix designs below 38 mm, especially considering that most overlays are less than that. The results also showed that the current mixes are already optimized in terms of cracking and rutting resistance. Three new mixes with 9.5 mm NMAS aggregates and SBS modified binder were designed. These include two dense-graded mixes using PG 76-22 SBS and PG 70-28 SBS modified binders, and one SMA mix utilizing the PG 76-22 SBS modified binder. All theseii mixes demonstrated better cracking properties compared to commonly used mixtures. While their rutting properties were either comparable or occasionally inferior but meeting the rutting criteria. Based on these findings, it can be proposed that the use of a 9.5 mm NMAS mix improves compaction and compatibility with lift thickness. Additionally, these mixes reduce susceptibility to cracking and extend service life of the overlay. To get a superior overlay mix, SMA can be employed as it had 2.5 times better CT Index compared to the conventional 12.5 mm mix.
ContributorsHasan, Morshed Washif (Author) / Kaloush, Kamil E (Thesis advisor) / Noorvand, Hossein (Thesis advisor) / Ozer, Hasan (Committee member) / Arizona State University (Publisher)
Created2023
171636-Thumbnail Image.png
Description
A successful implementation of a Pavement Management System (PMS) allows agencies to make objective and informed decisions in maintaining their pavement assets effectively. Since 2008, the City of Phoenix, Arizona, has implemented PMS to maintain approximately 7,725 km (4,800 mi) of pavements. PMS is not a static system but a

A successful implementation of a Pavement Management System (PMS) allows agencies to make objective and informed decisions in maintaining their pavement assets effectively. Since 2008, the City of Phoenix, Arizona, has implemented PMS to maintain approximately 7,725 km (4,800 mi) of pavements. PMS is not a static system but a dynamic system requiring regular updates to reflect pavement performance and meet the agency's goals and budget. After upgrading to the Automated Road Analyzer (ARAN) 9000 in 2017, there is a need for Phoenix to evaluate its PMS. A low pavement condition index (PCI) for newly paved roads and the requirements for more than 35% of scheduled fog seal projects to be upgraded to heavier treatments observed, also motivated this research effort. The scope of this research was limited to the flexible pavement preservation program and the objectives are: (1) to evaluate the effectiveness of the existing City of Phoenix PMS and (2) to recommend improvements to the existing PMS. This study evaluated technical and non-technical aspects of Phoenix’s preservation program. Since pavements in a structurally sound condition are good candidates for preservation treatment, a single pavement performance indicator, which allows agencies to be more flexible with their preservation treatments and minimize the pavement performance data collection and modeling efforts, was explored. A simple yet measurable and trackable pavement performance indicator, Surface Cracking Index (SCI), representing the overall pavement condition to perform PMS analysis for a preservation program, was proposed. In addition, using a performance indicator, the International Roughness Index (IRI) to represent the ride quality or roughness, is a challenge for many local governments due to the nature of urban roadway related conditions such as stop and go driving conditions, abrupt lane change maneuvering, and lower prevailing speed. Therefore, a surface roughness indicator, Mean Profile Depth (MPD) measuring pavement surface macrotexture, was explored, and is proposed to be integrated in the PMS to optimize preservation treatments and recommendation strategies. While Phoenix will directly benefit from this research study outcomes, any agency who uses PMS, or plans to use PMS for their preservation program, will also benefit from this research effort.
ContributorsN-Sang, Seng Hkawn (Author) / Kaloush, Kamil (Thesis advisor) / Medina, Jose (Committee member) / Mamlouk, Michael (Committee member) / Ozer, Hasan (Committee member) / Arizona State University (Publisher)
Created2022
171706-Thumbnail Image.png
Description
Thermal susceptibility is one of the biggest challenges that asphalt pavements must overcome. Asphalt mixture’s thermal susceptibility can increase problems related to permanent deformation, and the expansion-contraction phenomenon triggers thermal cracking. Furthermore, there is a common worldwide interest in environmental impacts and pavements. Saving energy and mitigating the urban heat

Thermal susceptibility is one of the biggest challenges that asphalt pavements must overcome. Asphalt mixture’s thermal susceptibility can increase problems related to permanent deformation, and the expansion-contraction phenomenon triggers thermal cracking. Furthermore, there is a common worldwide interest in environmental impacts and pavements. Saving energy and mitigating the urban heat island (UHI) effect have been drawing the attention of researchers, governments, and industrial organizations. Pavements have been shown to play an important role in the UHI effect. Globally, about 90% of roadways are made of asphalt mixtures. The main objective of this research study involves the development and testing of an innovative aerogel-based product in the modification of asphalt mixtures to function as a material with unique thermal resistance properties, and potentially providing an urban cooling mechanism for the UHI. Other accomplishments included the development of test procedures to estimate the thermal conductivity of asphalt binders, the expansion-contraction of asphalt mixtures, and a computational tool to better understand the pavement’s thermal profile and stresses. Barriers related to the manufacturing and field implementation of the aerogel-based product were overcome. Unmodified and modified asphalt mixtures were manufactured at an asphalt plant to build pavement slabs. Thermocouples installed at top and bottom collected data daily. This data was valuable in understanding the temperature fluctuation of the pavement. Also, the mechanical properties of asphalt binders and mixtures with and without the novel product were evaluated in the laboratory. Fourier transform infrared (FTIR) and scanning electron microscope (SEM) analyses were also used to understand the interaction of the developed product with bituminous materials. The modified pavements showed desirable results in reducing overall pavement temperatures and suppressing the temperature gradient, a key to minimize thermal cracking. The comprehensive laboratory tests showed favorable outcomes for pavement performance. The use of a pavement design software, and life cycle/cost assessment studies supported the use of this newly developed technology. Modified pavements would perform better than control in distresses related to permanent deformation and thermal cracking; they reduce tire/pavement noise, require less raw material usage during their life cycle, and have lower life cycle cost compared to conventional pavements.
ContributorsObando Gamboa, Carlos Javier (Author) / Kaloush, Kamil (Thesis advisor) / Mamlouk, Michael (Committee member) / Ozer, Hasan (Committee member) / Fini, Elham (Committee member) / Zapata, Claudia (Committee member) / Arizona State University (Publisher)
Created2022
158782-Thumbnail Image.png
Description

United States Air Force airfield PAVER pavement management system enterprise data was reviewed for 67 networks. The distress survey extents and severity fields were joined with treatment costs estimated using RSMeans to determine the costliest distress. In asphalt surfaced pavements Longitudinal/transverse cracking, weathering, and block cracking resulted in the most

United States Air Force airfield PAVER pavement management system enterprise data was reviewed for 67 networks. The distress survey extents and severity fields were joined with treatment costs estimated using RSMeans to determine the costliest distress. In asphalt surfaced pavements Longitudinal/transverse cracking, weathering, and block cracking resulted in the most pavement condition index (PCI) deducts while the costliest distresses are weathering, block cracking and longitudinal cracking. In portland cement concrete surfaced pavements linear cracking, joint seal damage, and joint spalling resulted in the most PCI deducts while the costliest distresses are joint seal damage, linear cracking, and corner spalling. The results of this data were then compared to airfield attributes: Pavement Temperature Group, Dominant American Association of State Highway and Transportation Officials (AASHTO) Soil Classification, Pavement- Transportation Computer Assisted Structural Engineering (PCASE) Climate Zone, and years since last maintenance. Maps showing the Pavement Temperature Group, Dominant AASHTO Soil Classification, and PCASE Climate Zone are included in Appendix A. Alligator cracking is most prevalent at the airfields with PTG 64-34 (Ellsworth, Fairchild, Hill, and Offutt) and 58-22 (Niagara and Vandenberg). Rutting is most prevalent at PTG 64-34 (Ellsworth, Fairchild, Hill, and Offutt). An increasing trend of joint spalling, corner spalling, and corner break with decreasing soil quality (AASHOTO A-1 to A-8 soils). The PCASE Climate Zone Cost Indices the cost index for weathering is approximately double in the moist region over the dry region. The cost index for block cracking is approximately double in the cold region over the hot region. It is recommended that the agency review its pavement performance modeling in the pavement management system to increase the recommendation of pavement preservation treatments and review the use of higher quality materials for pavement maintenance treatments.

ContributorsThevenot, Ronald (Author) / Kaloush, Kamil (Thesis advisor) / Mamlouk, Michael S. (Thesis advisor) / Ozer, Hasan (Committee member) / Arizona State University (Publisher)
Created2020
158345-Thumbnail Image.png
Description
Several ways exist to improve pavement performance over time. One suggestion is to tailor the asphalt pavement mix design according to certain specified specifications, set up by each state agency. Another option suggests the addition of modifiers that are known to improve pavement performance, such as crumb rubber and fibers.

Several ways exist to improve pavement performance over time. One suggestion is to tailor the asphalt pavement mix design according to certain specified specifications, set up by each state agency. Another option suggests the addition of modifiers that are known to improve pavement performance, such as crumb rubber and fibers. Nowadays, improving asphalt pavement structures to meet specific climate conditions is a must. In addition, time and cost are two crucial settings and are very important to consider; these factors sometimes play a huge role in modifying the asphalt mix design needed to be set into place, and therefore alter the desired pavement performance over the expected life span of the structure. In recent studies, some methods refer to predicting pavement performance based on the asphalt mixtures volumetric properties.

In this research, an effort was undertaken to gather and collect most recent asphalt mixtures’ design data and compare it to historical data such as those available in the Long-Term Pavement Performance (LTPP), maintained by the Federal Highway Administration (FHWA). The new asphalt mixture design data was collected from 25 states within the United States and separated according to the four suggested climatic regions. The previously designed asphalt mixture designs in the 1960’s present in the LTPP Database implemented for the test sections were compared with the recently designed pavement mixtures gathered, and pavement performance was assessed using predictive models.

Three predictive models were studied in this research. The models were related to three major asphalt pavement distresses: Rutting, Fatigue Cracking and Thermal Cracking. Once the performance of the asphalt mixtures was assessed, four ranking criteria were developed to support the assessment of the mix designs quality at hand; namely, Low, Satisfactory, Good or Excellent. The evaluation results were reasonable and deemed acceptable. Out of the 48 asphalt mixtures design evaluated, the majority were between Satisfactory and Good.

The evaluation methodology and criteria developed are helpful tools in determining the quality of asphalt mixtures produced by the different agencies. They provide a quick insight on the needed improvement/modification against the potential development of distress during the lifespan of the pavement structure.
ContributorsKaram, Jolina Joseph (Author) / Kaloush, Kamil (Thesis advisor) / Mamlouk, Michael (Thesis advisor) / Ozer, Hasan (Committee member) / Arizona State University (Publisher)
Created2020