Matching Items (463)
Filtering by

Clear all filters

149998-Thumbnail Image.png
Description
As the 3rd generation solar cell, quantum dot solar cells are expected to outperform the first 2 generations with higher efficiency and lower manufacture cost. Currently the main problems for QD cells are the low conversion efficiency and stability. This work is trying to improve the reliability as well as

As the 3rd generation solar cell, quantum dot solar cells are expected to outperform the first 2 generations with higher efficiency and lower manufacture cost. Currently the main problems for QD cells are the low conversion efficiency and stability. This work is trying to improve the reliability as well as the device performance by inserting an interlayer between the metal cathode and the active layer. Titanium oxide and a novel nitrogen doped titanium oxide were compared and TiOxNy capped device shown a superior performance and stability to TiOx capped one. A unique light anneal effect on the interfacial layer was discovered first time and proved to be the trigger of the enhancement of both device reliability and efficiency. The efficiency was improved by 300% and the device can retain 73.1% of the efficiency with TiOxNy when normal device completely failed after kept for long time. Photoluminescence indicted an increased charge disassociation rate at TiOxNy interface. External quantum efficiency measurement also inferred a significant performance enhancement in TiOxNy capped device, which resulted in a higher photocurrent. X-ray photoelectron spectrometry was performed to explain the impact of light doping on optical band gap. Atomic force microscopy illustrated the effect of light anneal on quantum dot polymer surface. The particle size is increased and the surface composition is changed after irradiation. The mechanism for performance improvement via a TiOx based interlayer was discussed based on a trap filling model. Then Tunneling AFM was performed to further confirm the reliability of interlayer capped organic photovoltaic devices. As a powerful tool based on SPM technique, tunneling AFM was able to explain the reason for low efficiency in non-capped inverted organic photovoltaic devices. The local injection properties as well as the correspondent topography were compared in organic solar cells with or without TiOx interlayer. The current-voltage characteristics were also tested at a single interested point. A severe short-circuit was discovered in non capped devices and a slight reverse bias leakage current was also revealed in TiOx capped device though tunneling AFM results. The failure reason for low stability in normal devices was also discussed comparing to capped devices.
ContributorsYu, Jialin (Author) / Jabbour, Ghassan E. (Thesis advisor) / Alford, Terry L. (Thesis advisor) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2011
150400-Thumbnail Image.png
Description
Semiconductor nanowires are featured by their unique one-dimensional structure which makes them promising for small scale electronic and photonic device applications. Among them, III-V material nanowires are particularly outstanding due to their good electronic properties. In bulk, these materials reveal electron mobility much higher than conventional silicon based devices, for

Semiconductor nanowires are featured by their unique one-dimensional structure which makes them promising for small scale electronic and photonic device applications. Among them, III-V material nanowires are particularly outstanding due to their good electronic properties. In bulk, these materials reveal electron mobility much higher than conventional silicon based devices, for example at room temperature, InAs field effect transistor (FET) has electron mobility of 40,000 cm2/Vs more than 10 times of Si FET. This makes such materials promising for high speed nanowire FETs. With small bandgap, such as 0.354 eV for InAs and 1.52 eV for GaAs, it does not need high voltage to turn on such devices which leads to low power consumption devices. Another feature of direct bandgap allows their applications of optoelectronic devices such as avalanche photodiodes. However, there are challenges to face up. Due to their large surface to volume ratio, nanowire devices typically are strongly affected by the surface states. Although nanowires can be grown into single crystal structure, people observe crystal defects along the wires which can significantly affect the performance of devices. In this work, FETs made of two types of III-V nanowire, GaAs and InAs, are demonstrated. These nanowires are grown by catalyst-free MOCVD growth method. Vertically nanowires are transferred onto patterned substrates for coordinate calibration. Then electrodes are defined by e-beam lithography followed by deposition of contact metals. Prior to metal deposition, however, the substrates are dipped in ammonium hydroxide solution to remove native oxide layer formed on nanowire surface. Current vs. source-drain voltage with different gate bias are measured at room temperature. GaAs nanowire FETs show photo response while InAs nanowire FETs do not show that. Surface passivation is performed on GaAs FETs by using ammonium surfide solution. The best results on current increase is observed with around 20-30 minutes chemical treatment time. Gate response measurements are performed at room temperature, from which field effect mobility as high as 1490 cm2/Vs is extracted for InAs FETs. One major contributor for this is stacking faults defect existing along nanowires. For InAs FETs, thermal excitations observed from temperature dependent results which leads us to investigate potential barriers.
ContributorsLiang, Hanshuang (Author) / Yu, Hongbin (Thesis advisor) / Ferry, David (Committee member) / Tracy, Clarence (Committee member) / Arizona State University (Publisher)
Created2011
150360-Thumbnail Image.png
Description
A workload-aware low-power neuromorphic controller for dynamic power and thermal management in VLSI systems is presented. The neuromorphic controller predicts future workload and temperature values based on the past values and CPU performance counters and preemptively regulates supply voltage and frequency. System-level measurements from stateof-the-art commercial microprocessors are used to

A workload-aware low-power neuromorphic controller for dynamic power and thermal management in VLSI systems is presented. The neuromorphic controller predicts future workload and temperature values based on the past values and CPU performance counters and preemptively regulates supply voltage and frequency. System-level measurements from stateof-the-art commercial microprocessors are used to get workload, temperature and CPU performance counter values. The controller is designed and simulated using circuit-design and synthesis tools. At device-level, on-chip planar inductors suffer from low inductance occupying large chip area. On-chip inductors with integrated magnetic materials are designed, simulated and fabricated to explore performance-efficiency trade offs and explore potential applications such as resonant clocking and on-chip voltage regulation. A system level study is conducted to evaluate the effect of on-chip voltage regulator employing magnetic inductors as the output filter. It is concluded that neuromorphic power controller is beneficial for fine-grained per-core power management in conjunction with on-chip voltage regulators utilizing scaled magnetic inductors.
ContributorsSinha, Saurabh (Author) / Cao, Yu (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Yu, Hongbin (Committee member) / Christen, Jennifer B. (Committee member) / Arizona State University (Publisher)
Created2011
148108-Thumbnail Image.png
Description

This 15-week long course is designed to introduce students, specifically in Arizona, to basic sustainability and conservation principles in the context of local reptile wildlife. Throughout the course, the students work on identifying the problem, creating visions for the desired future, and finally developing a strategy to help with reptile

This 15-week long course is designed to introduce students, specifically in Arizona, to basic sustainability and conservation principles in the context of local reptile wildlife. Throughout the course, the students work on identifying the problem, creating visions for the desired future, and finally developing a strategy to help with reptile species survival in the valley. Research shows that animals in the classroom have led to improved academic success for students. Thus, through creating this course I was able to combine conservation and sustainability curriculum with real-life animals whose survival is directly being affected in the valley. My hope is that this course will help students identify a newfound passion and call to action to protect native wildlife. The more awareness and actionable knowledge which can be brought to students in Arizona about challenges to species survival the more likely we are to see a change in the future and a stronger sense of urgency for protecting wildlife. In order to accomplish these goals, the curriculum was developed to begin with basic concepts of species needs such as food and shelter and basic principles of sustainability. As the course progresses the students analyze current challenges reptile wildlife faces, like urban sprawl, and explore options to address these challenges. The course concludes with a pilot pitch where students present their solution projects to the school.

ContributorsGoethe, Emma Rae (Author) / Brundiers, Katja (Thesis director) / Bouges, Olivia (Committee member) / School of Sustainability (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147848-Thumbnail Image.png
Description

Universal Basic Income is a proposed policy where the government would regularly pay all citizens in cash. The idea of a Universal Basic Income (UBI) has had a resurgence in recent years because of popular figures like Andrew Yang and Elon Musk, but its history and potential implications go dee

Universal Basic Income is a proposed policy where the government would regularly pay all citizens in cash. The idea of a Universal Basic Income (UBI) has had a resurgence in recent years because of popular figures like Andrew Yang and Elon Musk, but its history and potential implications go deep into the structure of human society. This thesis delves into how a basic income would transform social concepts of work and disrupt the personal economic model. With the bargaining power and freedom granted by a basic income, workers would find themselves in a position of work freedom and choice that has never existed in human history. With new freedom to do as they wish, the place of work in people’s lives needs to be reimagined as a source of fulfillment instead of an unlikeable but necessary part of everyday life. Workers will be given the choice to leave unfair or unfulfilling work and decide for themselves how they want to contribute within society. From increasing mental and economic well-being for most Americans to serving as a response to unemployment trends in the automated future, to encouraging greater business innovation, there are myriad ways in which basic incomes have the potential to benefit society. Framed by Martin Luther King Jr. and Franklin Delano Roosevelt as the only policy capable of abolishing poverty forever, Universal Basic income will be an important feature of transformative innovative policy advocacy until it is adopted by a major world government at which point the effects in practice will become clear.

ContributorsSimm, Michael Anthony (Author) / Soares, Rebecca (Thesis director) / Voorhees, Matthew (Committee member) / School of Sustainability (Contributor) / School of Politics and Global Studies (Contributor) / School for the Future of Innovation in Society (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148182-Thumbnail Image.png
Description

Globally, the incidental capture of non-target species in fisheries (bycatch) has been linked to declines of ecologically, economically, and culturally important marine species. Gillnet fisheries have especially high bycatch due to their non-selective nature, necessitating the development of new bycatch reduction technologies (BRTs). Net illumination is an emerging BRT that

Globally, the incidental capture of non-target species in fisheries (bycatch) has been linked to declines of ecologically, economically, and culturally important marine species. Gillnet fisheries have especially high bycatch due to their non-selective nature, necessitating the development of new bycatch reduction technologies (BRTs). Net illumination is an emerging BRT that has shown promise in reducing bycatch of marine megafauna, including sea turtles, cetaceans, and seabirds. However, little research has been conducted to understand the effects of net illumination on fish assemblages, including bony fish and elasmobranchs (i.e. sharks, rays, and skates). Here, I assessed a 7-year dataset of paired net illumination trials using four different types of light (green LEDs, green chemical glowsticks, ultraviolet (UV) lights, and orange lights) to examine the effects of net illumination on fish catch and bycatch in a gillnet fishery at Baja California Sur, Mexico. Analysis revealed no significant effect on bony fish target catch or bycatch for any light type. There was a significant decrease in elasmobranch bycatch using UV and orange lights, with orange lights showing the most promise for decreasing elasmobranch bycatch, resulting in a 50% reduction in bycatch rates. Analysis of the effects of net illumination on elasmobranch target catch was limited due to insufficient data. These results indicate that the illumination of gillnets may offer a practical solution for reducing fish bycatch while maintaining target catch. More research should be conducted to understand the effects of net illumination in different fisheries, how net illumination affects fisher profit and efficiency, and how net illumination affects fish behavior. Further optimization of net illumination is also necessary before the technology can be recommended on a broader scale.

ContributorsBurgher, Kayla Marie (Author) / Senko, Jesse (Thesis director) / Throop, Heather (Committee member) / School of Life Sciences (Contributor) / School of Sustainability (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147975-Thumbnail Image.png
Description

As climate change continues to escalate natural hazards around the globe, certain communities feel the impacts of these disasters more so than others. After Hurricane Maria devastated communities in 2017, Puerto Rico struggled to respond to the needs of its citizens, particularly those in rural areas. Many of the regions

As climate change continues to escalate natural hazards around the globe, certain communities feel the impacts of these disasters more so than others. After Hurricane Maria devastated communities in 2017, Puerto Rico struggled to respond to the needs of its citizens, particularly those in rural areas. Many of the regions affected did not have resilient community structures in place to be able to withstand the systemic ripple effects of the hurricane. However, various community endeavors have developed post-Hurricane Maria to foster community collaboration and resiliency, including the development of agricultural tourism, otherwise known as agritourism. <br/>Although agritourism has begun to develop in rural regions of Puerto Rico, including the municipalities of Utuado, Ciales, Florida, and Jayuya, a systems-understanding is lacking of the current agritourism situation in the region and its related capacities, limitations, and opportunities of agritourism. To address this gap, a spatially explicit understanding and map of the underlying tourism infrastructure is needed to support the development of sustainable agritourism in Utuado, Jayuya, Ciales, and Florida municipalities in Puerto Rico. <br/>This report spatially represents the current state of tourism opportunities in the region as a result of asking “What are the spatial networks of gastronomy, accommodations, farms, and attractions that support the development of agritourism in Utuado, Jayuya, Ciales and Florida municipalities in Puerto Rico?” Three steps lead to the spatial representation starting with developing a comprehensive inventory. Second, we visualize the spatial map through Google Maps. Lastly, we explore the larger context of the report through an ArcGIS Storymap. The inventory will help with better understanding the number and variety of tourism resources available. The spatial visualization will help with understanding the distribution of resources and explore potential connections between resources and what relationships could be fostered in the future. Lastly, the ArcGIS Storymap will serve as a framework for outlining the future development of the SARE project. Overall, this report outlines the spatial maps of tourism resources and provides a tool to be used by community partners, tourists, and project partners.

ContributorsCretors, Kasey Ann (Author) / Brundiers, Katja (Thesis director) / Holladay, Patrick (Committee member) / Lazaro, Pablo Mendez (Committee member) / School of International Letters and Cultures (Contributor) / School of Sustainability (Contributor) / Division of Teacher Preparation (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147982-Thumbnail Image.png
Description

Bioluminescent algae has long fascinated humans as a beautiful natural phenomenon. This creative project uses bioluminescent algae to push the limit of biomimicry, using the algae not as a model but as a technology. Through experimentation with algae samples and industrial design, two potential applications of bioluminescent algae as a

Bioluminescent algae has long fascinated humans as a beautiful natural phenomenon. This creative project uses bioluminescent algae to push the limit of biomimicry, using the algae not as a model but as a technology. Through experimentation with algae samples and industrial design, two potential applications of bioluminescent algae as a sustainable lighting technology were generated. One design focuses on indoor, private lighting, while the other focuses on outdoor, public lighting. Both outcomes attempt to solve problems generated by nighttime lighting including light pollution, wasted electricity usage, and negative impacts on human and environmental health while retaining the benefits of safety and convenience.

ContributorsFernald, Isabel (Author) / Shin, Dosun (Thesis director) / Feil, Magnus (Committee member) / The Design School (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147795-Thumbnail Image.png
Description

We analyzed multiple different models that can be utilized when measuring effects effects of fire and fire behavior in a forest ecosystem. In the thesis we focused on exploring ordinary differential equations, stochastic models, and partial differential equations

ContributorsVo, Sabrina (Author) / Jones, Donald (Thesis director) / Parker, Nathan (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148085-Thumbnail Image.png
Description

Is there a mismatch between urban farmers’ perceptions of their farm’s environmental sustainability and its actual environmental impact? Focusing on the use of water and nutrients on each farm as described by the farmers through interviews, it is evident that there is some level of disconnect between ideals and practices.

Is there a mismatch between urban farmers’ perceptions of their farm’s environmental sustainability and its actual environmental impact? Focusing on the use of water and nutrients on each farm as described by the farmers through interviews, it is evident that there is some level of disconnect between ideals and practices. This project may aid in bridging the gap between the two in regard to the farmers’ sustainability goals. This project will move forward by continuing interviews with farmers as well as collecting soil and water from the farms in order to more accurately quantify the sustainability of the farms’ practices. This project demonstrates that there is some degree of misalignment between perception and reality. Two farms claimed they were sustainable when their practices did not reflect that, while 2 farms said they were not sure if they were sustainable when their practices indicated otherwise. Samples from two farms showed high concentrations of nutrients and salts, supporting the idea that there may be a mismatch between perceived and actual sustainability.

ContributorsBonham, Emma Eileen (Author) / Muenich, Rebecca (Thesis director) / Zanin, Alaina (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor) / School of Sustainability (Contributor) / School of Sustainable Engineering & Built Envirnmt (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05