Matching Items (75)
137015-Thumbnail Image.png
Description
Substance abuse disorders affect 15.3 million people worldwide. The field has primarily focused on dopaminergic drugs as treatments for substance use disorders. However, recent work has demonstrated the potential of serotonergic compounds to treat substance abuse. Specifically, the serotonin 1B receptor (5-HT1BR), a Gi-coupled receptor located throughout the mesocorticolimbic dopamine

Substance abuse disorders affect 15.3 million people worldwide. The field has primarily focused on dopaminergic drugs as treatments for substance use disorders. However, recent work has demonstrated the potential of serotonergic compounds to treat substance abuse. Specifically, the serotonin 1B receptor (5-HT1BR), a Gi-coupled receptor located throughout the mesocorticolimbic dopamine system, has been implicated in the incentive motivational and rewarding effects of cocaine. Our research suggests that the stimulation of 5-HT1BRs produces different effects at various time points in the addiction cycle. During maintenance of chronic cocaine administration, 5-HT1BR stimulation has a facilitative effect on the reinforcing properties of cocaine. However 5-HT1BR stimulation exhibits inhibitory effects on reinforcement during prolonged abstinence from cocaine. The aim of this study was to examine the possibility of a switch in the functional role of 5-HT1BRs in the locomotor effects of cocaine at different time points of chronic cocaine administration in mice. We found that the 5-HT1BR agonist CP 94,253 increased locomotor activity in mice tested one day after the last chronic cocaine administration session regardless of whether the chronic treatment was cocaine or saline and regardless of challenge injection (i.e., cocaine or saline). Yet after abstinence, CP 94,253 induced a decrease in locomotor activity in mice challenged with saline and attenuated cocaine-induced locomotion relative to cocaine challenge after vehicle pretreatment. These findings suggest that a switch in the functional role of 5-HT1BR is observed at different stages of the addiction cycle and further suggest that clinical applications of drugs acting on 5-HT1BR should consider these effects.
ContributorsBrunwasser, Samuel Joshua (Author) / Neisewander, Janet (Thesis director) / Pentkowski, Nathan (Committee member) / Der-Ghazarian, Taleen (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / Department of Psychology (Contributor)
Created2014-05
137078-Thumbnail Image.png
Description
N. fowleri has been coined the "brain-eating" amoeba, receiving increased attention from both the media and scientific research since its discovery in 1961. While infection is extremely rare, it infects humans through the nasal passage after exposure to contaminated, warm freshwater, causing the brain destroying reaction primary amoebic meningoencephalitis (PAM).

N. fowleri has been coined the "brain-eating" amoeba, receiving increased attention from both the media and scientific research since its discovery in 1961. While infection is extremely rare, it infects humans through the nasal passage after exposure to contaminated, warm freshwater, causing the brain destroying reaction primary amoebic meningoencephalitis (PAM). Those infected with PAM present with symptoms such as severe headache and loss of the sense of smell and will typically die within a week thereafter. This fulminant pathogenicity has led to increased awareness of N. fowleri through the news and public health centers. This thesis aims to comprehensively review N. fowleri, the epidemiology and pathology of PAM, interventions against the disease, and how the news has portrayed N. fowleri and PAM. This thesis also strives to raise ethical and thought-provoking questions about how much media coverage and research funding N. fowleri receives given its rarity, as well as explore its value and novel contributions to understanding disease as a whole.
ContributorsFerrell, Chantell Isabell (Author) / Buetow, Kenneth (Thesis director) / Neisewander, Janet (Committee member) / McGlynn, Katherine (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Life Sciences (Contributor)
Created2014-05
136985-Thumbnail Image.png
Description
Within the field of psychopharmacology, there has been difficultly with studying the functional effects of dopamine at the D2 receptor apart from other dopamine receptors due to the lack of drugs that are selective for the D2 receptor. The purpose of this study was to observe the motivational and locomotor

Within the field of psychopharmacology, there has been difficultly with studying the functional effects of dopamine at the D2 receptor apart from other dopamine receptors due to the lack of drugs that are selective for the D2 receptor. The purpose of this study was to observe the motivational and locomotor effects of using three varying doses (1.0, 3.0, and 5.6 mg/kg) of a new, highly selective D2 antagonist, SV293. These doses were tested across five different conditions that explore the effects of controls, SV293 by itself, and in combination with cocaine. These tests are designed to separately assess the effects of the antagonist between drug-seeking behaviors and locomotor activity. The cue tests showed that SV293 reduced drug-seeking and increased response latency at the high dose, suggesting a decrease in motivational effects of cocaine-related cues. SV293 alone also reduced drug-seeking and increased response latency at the high dose, suggesting a decrease in motivation for cocaine. Cocaine in combination with SV293 did not produce any significant effects on drug-seeking behavior, suggesting that SV293 did not alter the motivational effects of cocaine itself. Spontaneous locomotor activity tests with SV293 alone showed no reduction in locomotor activity; however, the addition of cocaine showed a significant decrease in locomotor activity at the high dose of SV293. Overall, the 5.6 mg/kg dose of SV293 decreases drug-seeking behavior elicited by cocaine-related cues and environmental stimuli, as well as cocaine-induced locomotor activity. This selective D2 antagonism could ultimately help elucidate the mechanisms of other dopamine receptors with particular emphasis on their involvement with drug addiction. Key words: cocaine, SV293, D2, antagonists, dopamine
ContributorsLynn, Jeffrey Spencer (Author) / Neisewander, Janet (Thesis director) / Orchinik, Miles (Committee member) / Bastle, Ryan (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05
134455-Thumbnail Image.png
Description
MicroRNAs are small, non-coding transcripts that control gene expression by preventing mRNA from translating into proteins. They have been implicated to play a role in many drug addictions. We previously found that miR-495 targets several addiction-related genes (ARGs) and is highly expressed in the nucleus accumbens (NAc). We also found

MicroRNAs are small, non-coding transcripts that control gene expression by preventing mRNA from translating into proteins. They have been implicated to play a role in many drug addictions. We previously found that miR-495 targets several addiction-related genes (ARGs) and is highly expressed in the nucleus accumbens (NAc). We also found miR-495 is downregulated in the NAc following acute cocaine administration, and cocaine motivation measured by breakpoint on a progressive ratio schedule of cocaine reinforcement is decreased when miR-495 is overexpressed. In this study, we manipulated the endogenous levels of miR-495 by using a viral vector. Using an animal model, rats were first trained for self-administration on a fixed ratio (FR) schedule of reinforcement. After they were infused with a lentivirus to overexpress (LV-miR-495) or decrease (LV-Sponge) miR-495, in the NAc shell. The rats were then tested for extinction and reinstatement of cocaine-seeking behavior, which are measures of motivation for cocaine. We measured the relative levels of miR-495 in the NAc shell using qRT-PCR. Our results show that overexpression of miR-495 decreased cocaine-seeking behavior during extinction and cocaine reinstatement, as we hypothesized. Surprisingly, miR-495 LV-sponge also decreased cocaine-seeking behavior in extinction, not as we hypothesized. However, we found that LV-Sponge failed to significantly decrease levels of miR-495 as intended. In conclusion, understanding why LV-Sponge decreased, rather than increased, miR-495 will need further study, however, the results with LV-miR-495 extend previous findings that miR-495 plays a vital role in the molecular mechanism that influences motivation to seek cocaine.
ContributorsChaudhury, Trisha (Author) / Neisewander, Janet (Thesis director) / Newbern, Jason (Committee member) / Powell, Gregory (Committee member) / Department of Psychology (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134699-Thumbnail Image.png
Description
Nicotine use is an outstanding public health problem with associated social and economic consequences. Nicotine is an active alkaloid compound in tobacco and is recognized as a psychoactive drug. Preclinically, nicotine addiction and relapse can be modeled using a self-administration-reinstatement paradigm. Here, we used a nicotine self-administration and contingent cue-induced

Nicotine use is an outstanding public health problem with associated social and economic consequences. Nicotine is an active alkaloid compound in tobacco and is recognized as a psychoactive drug. Preclinically, nicotine addiction and relapse can be modeled using a self-administration-reinstatement paradigm. Here, we used a nicotine self-administration and contingent cue-induced reinstatement model to examine rapid, transient synaptic plasticity (t-SP) induced by nicotine cue-triggered motivation. Although preliminary, treatment with the NMDA GluN2B subunit antagonist, ifenprodil, reduced reinstated nicotine seeking, and increased the percentage of spines with smaller head diameters. Thus, future studies are needed to fully parse out the role of NAcore GluN2B receptors in cued nicotine seeking and t-SP.
ContributorsMccallum, Joseph John (Author) / Gipson-Reichardt, Cassandra (Thesis director) / Neisewander, Janet (Committee member) / Olive, Michael Foster (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134677-Thumbnail Image.png
Description
In this field study, 103 individuals from two different music festivals, one in California and one in Michigan, were surveyed to observe current attitudes surrounding harm reduction strategies associated with psychedelic drug usage in the EDM scene. Topics from the survey included but were not limited to the chemical testing

In this field study, 103 individuals from two different music festivals, one in California and one in Michigan, were surveyed to observe current attitudes surrounding harm reduction strategies associated with psychedelic drug usage in the EDM scene. Topics from the survey included but were not limited to the chemical testing of substances, frequency of usage, spacing between usage, and adverse effects associated with usage. It was concluded that harm reduction education should become more integrated within the EDM scene in order to provide research-based evidence for ravers to make better decisions for their health. While authorities have pushed "just say no", the lack of education altogether in the community is life threatening. Education is the key to saving minds, bodies, and lives.
ContributorsForcade, Shea Danielle (Author) / Olive, Foster (Thesis director) / Neisewander, Janet (Committee member) / Gipson-Reichardt, Cassandra (Committee member) / School of Nutrition and Health Promotion (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
133470-Thumbnail Image.png
Description
The human hairless gene (HR) encodes a 130 kDa transcription factor that is primarily expressed in the brain and skin. In the promoter and 5'-untranslated regions (5'-UTR) of HR, there are three putative consensus p53 responsive elements (p53RE). p53 is a tumor suppressor protein that regulates cell proliferation, apoptosis, and

The human hairless gene (HR) encodes a 130 kDa transcription factor that is primarily expressed in the brain and skin. In the promoter and 5'-untranslated regions (5'-UTR) of HR, there are three putative consensus p53 responsive elements (p53RE). p53 is a tumor suppressor protein that regulates cell proliferation, apoptosis, and other cell functions. The p53 protein, a known tumor suppressor, acts as a transcription factor and binds to DNA p53REs to activate or repress transcription of the target gene. In general, the p53 binding sequence is 5'-RRRCWWGYYY-3' where W is A or T, and R and Y are purines or pyrimidines, respectively. However, even if the p53 binding sequence does not match the consensus sequence, p53 protein might still be able to bind to the response element. The intent of this investigation was to identify and characterize the p53REs in the promoter and 5'-UTR of HR. If the three p53REs (p53RE1, p53RE2, and p53RE3) are functional, then p53 can bind there and might regulate HR gene expression. The first aim for this thesis was to clone the putative p53REs into a luciferase reporter and to characterize the transcription of these p53REs in glioblastoma (U87 MG) and human embryonic kidney (HEK293) cell lines. Through the transactivation assay, it was discovered that p53REs 2 and 3 were functional in HEK293, but none of the response elements were functional in U87 MG. Since p53 displayed a different regulatory capacity of HR expression in HEK293 and U87 MG cells, the second aim was to verify whether the p53REs are mutated in GBM U87 MG cells by genomic DNA sequencing.
ContributorsMaatough, Anas (Author) / Neisewander, Janet (Thesis director) / Hsieh, Jui-Cheng (Committee member) / Goldstein, Elliott (Committee member) / School of Life Sciences (Contributor) / School of Historical, Philosophical and Religious Studies (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133302-Thumbnail Image.png
Description
The serotonin (5-hydroxytryptamine, 5-HT) system is implicated in the study of drug addiction. Of the 14 known serotonin receptor subtypes, the 5-HT7R is the most recently discovered and, therefore, one of the least rigorously studied. However, the 5-HT7R has been shown to play a role in multiple psychiatric conditions, including

The serotonin (5-hydroxytryptamine, 5-HT) system is implicated in the study of drug addiction. Of the 14 known serotonin receptor subtypes, the 5-HT7R is the most recently discovered and, therefore, one of the least rigorously studied. However, the 5-HT7R has been shown to play a role in multiple psychiatric conditions, including depression, anxiety, and alcoholism. This is not surprising, as the 5-HT7R is expressed in brain regions associated with emotion and reward, such as the amygdala, dorsal raphe nucleus, and striatum. MC-RG19 is a novel 5-HT7R antagonist which has >114-fold selectivity for the 5-HT7 over other serotonin receptors. This compound was developed by our collaborators at the Temple University School of Pharmacy. Due to this specificity, and the implications of the 5-HT7 in behavior, we hypothesized that MC-RG19 would have an effect on addiction-related behaviors. We investigated the effects of MC-RG19 on spontaneous locomotion, cue-induced reinstatement, and cocaine/sucrose multiple schedule self-administration. We observed a dose-dependent decrease in spontaneous locomotor activity with significance at a MC-RG19 dose of 10 mg/kg. A dose of 5.6 mg/kg, which did not significantly decrease locomotion, significantly reduces cocaine-seeking behavior (active lever pressing) in response to the reintroduction of drug-paired cues after a period of extinction. No dose (3, 5.6, or 10 mg/kg) produced a significant effect on a multiple schedule of self-administration with alternating availability of sucrose and cocaine as the reinforcer. These results indicate that MC-RG19 has an effect on the incentive \u2014 motivational properties of reward-paired cues.
ContributorsCarlson, Andrew Kenneth (Author) / Neisewander, Janet (Thesis director) / Gipson-Reichardt, Cassandra (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133108-Thumbnail Image.png
Description
Abstract White matter thickness correlates with various mental illness. Commissure white matter tracts are responsible for interconnecting the same cortical area in both hemispheres. Injury to the brain can result in thinning and shrinkage even collapsing and detachment of the white matter tracts' myelin sheaths. Injury can affect cognitive function

Abstract White matter thickness correlates with various mental illness. Commissure white matter tracts are responsible for interconnecting the same cortical area in both hemispheres. Injury to the brain can result in thinning and shrinkage even collapsing and detachment of the white matter tracts' myelin sheaths. Injury can affect cognitive function and time points are essential for therapeutic intervention. Research is beginning to identify gradual long-term neurodegenerative effects. With the advancement of brain imaging technology, we know that Wallerian degeneration has a significant negative impact on the white matter tracts throughout the brain (Johnson, Stewart, & Smith, 2013). If major tracts become injured like, the corpus callosum, then it can affect interhemispheric communication. Once myelin is damaged the axon becomes vulnerable, and the mechanisms of nerve recovery are not well known. Myelin sheath recovery has been studied in hopes to proliferate the oligodendrocytes that make up for the atrophied myelin. Neurotoxic chemicals released at activation of macrophages which hinders the brains ability to proliferate myelin protein needed for myelin differentiation adequately. In the central nervous system myelin has mechanisms to recover. Neurogenesis is a naturally occurring recovery mechanism seen after brain injury. Understanding the time points in which brain recovery occurs is important for treatment of diffuse injuries that cannot be identified through some imaging techniques. To better understand critical timepoints of natural recovery after brain injury can allow further investigation for early intervention to promote adequate recovery.
ContributorsLiptow, Kristen Ashley (Author) / Neisewander, Janet (Thesis director) / Law, L. Matthew (Committee member) / School of Social and Behavioral Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
134330-Thumbnail Image.png
Description
Abstract Cocaine is highly addictive because it exacerbates the action responsible for creating the feeling of "reward," which is controlled by the neurotransmitter dopamine. Dopamine receptors can be divided into five subtypes: D1, D2, D3, D4, and D5. The localization of D3 receptors is restricted to the mesolimbic pathway, which

Abstract Cocaine is highly addictive because it exacerbates the action responsible for creating the feeling of "reward," which is controlled by the neurotransmitter dopamine. Dopamine receptors can be divided into five subtypes: D1, D2, D3, D4, and D5. The localization of D3 receptors is restricted to the mesolimbic pathway, which is often called the "reward pathway." This pathway is associated with emotions, motivation, and behavior. There is evidence that these receptors are upregulated in response to the repeated use of psychostimulants, such as cocaine, making these receptors a potential target for pharmaceutical therapeutics for drug addiction. In the present study, two compounds selective for D3 receptors, MC-250041 and LS-3-134, were examined for their effects on spontaneous and cocaine-primed locomotor activity. The present study also aimed to examine the effects of MC-250041 and LS-3-134 on the number of lever presses and infusions under a progressive ratio (PR) schedule when subjects are trained to self-administer cocaine within an operant conditioning chamber. Based on the present research on D3 receptor compounds and D3Rs, I hypothesized that pretreatment with MC-250041 or LS-3-134 decreases cocaine self-administration under a progressive ratio (PR) schedule of cocaine reinforcement at doses that would have no effect on locomotor activity. The results showed no significant effects on spontaneous or cocaine-primed locomotor activity following an injection of MC-250041 (1, 3, 5.6 mg/kg IP). Similarly, there was no change in the amount of lever presses or drug infusions within an operant conditioning chamber at any of the examined doses of MC-250041 (3, 5.6, 10 mg/kg IP) during self-administration. LS-3-134 decreased cocaine-primed locomotor activity, as well as lever presses and infusions during self-administration at the 5.6 mg/kg dose; however, there was no effect on spontaneous locomotor activity at any of the examined doses (1, 3.2, 5.6 mg/kg IP). In conclusion, the results of the study suggest that LS-3-134 effectively reduced motivation for cocaine at the 5.6 mg/kg dose; whereas, MC-250041 was unsuccessful at warranting any significant effect on motivation for cocaine at any of the examined doses.
ContributorsMendoza, Rachel Ann (Author) / Neisewander, Janet (Thesis director) / Olive, Foster (Committee member) / Powell, Greg (Committee member) / School of Social Transformation (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05