Matching Items (213)
147992-Thumbnail Image.png
Description

The research presented in this Honors Thesis provides development in machine learning models which predict future states of a system with unknown dynamics, based on observations of the system. Two case studies are presented for (1) a non-conservative pendulum and (2) a differential game dictating a two-car uncontrolled intersection scenario.

The research presented in this Honors Thesis provides development in machine learning models which predict future states of a system with unknown dynamics, based on observations of the system. Two case studies are presented for (1) a non-conservative pendulum and (2) a differential game dictating a two-car uncontrolled intersection scenario. In the paper we investigate how learning architectures can be manipulated for problem specific geometry. The result of this research provides that these problem specific models are valuable for accurate learning and predicting the dynamics of physics systems.<br/><br/>In order to properly model the physics of a real pendulum, modifications were made to a prior architecture which was sufficient in modeling an ideal pendulum. The necessary modifications to the previous network [13] were problem specific and not transferrable to all other non-conservative physics scenarios. The modified architecture successfully models real pendulum dynamics. This case study provides a basis for future research in augmenting the symplectic gradient of a Hamiltonian energy function to provide a generalized, non-conservative physics model.<br/><br/>A problem specific architecture was also utilized to create an accurate model for the two-car intersection case. The Costate Network proved to be an improvement from the previously used Value Network [17]. Note that this comparison is applied lightly due to slight implementation differences. The development of the Costate Network provides a basis for using characteristics to decompose functions and create a simplified learning problem.<br/><br/>This paper is successful in creating new opportunities to develop physics models, in which the sample cases should be used as a guide for modeling other real and pseudo physics. Although the focused models in this paper are not generalizable, it is important to note that these cases provide direction for future research.

ContributorsMerry, Tanner (Author) / Ren, Yi (Thesis director) / Zhang, Wenlong (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148001-Thumbnail Image.png
Description

High-entropy alloys possessing mechanical, chemical, and electrical properties that far exceed those of conventional alloys have the potential to make a significant impact on many areas of engineering. Identifying element combinations and configurations to form these alloys, however, is a difficult, time-consuming, computationally intensive task. Machine learning has revolutionized many

High-entropy alloys possessing mechanical, chemical, and electrical properties that far exceed those of conventional alloys have the potential to make a significant impact on many areas of engineering. Identifying element combinations and configurations to form these alloys, however, is a difficult, time-consuming, computationally intensive task. Machine learning has revolutionized many different fields due to its ability to generalize well to different problems and produce computationally efficient, accurate predictions regarding the system of interest. In this thesis, we demonstrate the effectiveness of machine learning models applied to toy cases representative of simplified physics that are relevant to high-entropy alloy simulation. We show these models are effective at learning nonlinear dynamics for single and multi-particle cases and that more work is needed to accurately represent complex cases in which the system dynamics are chaotic. This thesis serves as a demonstration of the potential benefits of machine learning applied to high-entropy alloy simulations to generate fast, accurate predictions of nonlinear dynamics.

ContributorsDaly, John H (Author) / Ren, Yi (Thesis director) / Zhuang, Houlong (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
135702-Thumbnail Image.png
Description
A method has been developed that employs both procedural and optimization algorithms to adaptively slice CAD models for large-scale additive manufacturing (AM) applications. AM, the process of joining material layer by layer to create parts based on 3D model data, has been shown to be an effective method for quickly

A method has been developed that employs both procedural and optimization algorithms to adaptively slice CAD models for large-scale additive manufacturing (AM) applications. AM, the process of joining material layer by layer to create parts based on 3D model data, has been shown to be an effective method for quickly producing parts of a high geometric complexity in small quantities. 3D printing, a popular and successful implementation of this method, is well-suited to creating small-scale parts that require a fine layer resolution. However, it starts to become impractical for large-scale objects due to build volume and print speed limitations. The proposed layered manufacturing technique builds up models from layers of much thicker sheets of material that can be cut on three-axis CNC machines and assembled manually. Adaptive slicing techniques were utilized to vary layer thickness based on surface complexity to minimize both the cost and error of the layered model. This was realized as a multi-objective optimization problem where the number of layers used represented the cost and the geometric difference between the sliced model and the CAD model defined the error. This problem was approached with two different methods, one of which was a procedural process of placing layers from a set of discrete thicknesses based on the Boolean Exclusive OR (XOR) area difference between adjacent layers. The other method implemented an optimization solver to calculate the precise thickness of each layer to minimize the overall volumetric XOR difference between the sliced and original models. Both methods produced results that help validate the efficiency and practicality of the proposed layered manufacturing technique over existing AM technologies for large-scale applications.
ContributorsStobinske, Paul Anthony (Author) / Ren, Yi (Thesis director) / Bucholz, Leonard (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
148419-Thumbnail Image.png
Description

Currently, autonomous vehicles are being evaluated by how well they interact with humans without evaluating how well humans interact with them. Since people are not going to unanimously switch over to using autonomous vehicles, attention must be given to how well these new vehicles signal intent to human drivers from

Currently, autonomous vehicles are being evaluated by how well they interact with humans without evaluating how well humans interact with them. Since people are not going to unanimously switch over to using autonomous vehicles, attention must be given to how well these new vehicles signal intent to human drivers from the driver’s point of view. Ineffective communication will lead to unnecessary discomfort among drivers caused by an underlying uncertainty about what an autonomous vehicle is or isn’t about to do. Recent studies suggest that humans tend to fixate on areas of higher uncertainty so scenarios that have a higher number of vehicle fixations can be reasoned to be more uncertain. We provide a framework for measuring human uncertainty and use the framework to measure the effect of empathetic vs non-empathetic agents. We used a simulated driving environment to create recorded scenarios and manipulate the autonomous vehicle to include either an empathetic or non-empathetic agent. The driving interaction is composed of two vehicles approaching an uncontrolled intersection. These scenarios were played to twelve participants while their gaze was recorded to track what the participants were fixating on. The overall intent was to provide an analytical framework as a tool for evaluating autonomous driving features; and in this case, we choose to evaluate how effective it was for vehicles to have empathetic behaviors included in the autonomous vehicle decision making. A t-test analysis of the gaze indicated that empathy did not in fact reduce uncertainty although additional testing of this hypothesis will be needed due to the small sample size.

ContributorsGreenhagen, Tanner Patrick (Author) / Yang, Yezhou (Thesis director) / Jammula, Varun C (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
131372-Thumbnail Image.png
Description
In the last decade, a large variety of algorithms have been developed for use in object tracking, environment mapping, and object classification. It is often difficult for beginners to fully predict the constraints that multirotors place on machine vision algorithms. The purpose of this paper is to explain

In the last decade, a large variety of algorithms have been developed for use in object tracking, environment mapping, and object classification. It is often difficult for beginners to fully predict the constraints that multirotors place on machine vision algorithms. The purpose of this paper is to explain some of the types of algorithms that can be applied to these aerial systems, why the constraints for these algorithms exist, and what could be done to mitigate them. This paper provides a summary of the processes involved in a popular filter-based tracking algorithm called MOSSE (Minimum Output Sum of Squared Error) and a particular implementation of SLAM (Simultaneous Localization and Mapping) called LSD SLAM.
ContributorsVan Hazel, Colton (Author) / Zhang, Wenlong (Thesis director) / Yang, Yezhou (Committee member) / Engineering Programs (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132368-Thumbnail Image.png
Description
A defense-by-randomization framework is proposed as an effective defense mechanism against different types of adversarial attacks on neural networks. Experiments were conducted by selecting a combination of differently constructed image classification neural networks to observe which combinations applied to this framework were most effective in maximizing classification accuracy. Furthermore, the

A defense-by-randomization framework is proposed as an effective defense mechanism against different types of adversarial attacks on neural networks. Experiments were conducted by selecting a combination of differently constructed image classification neural networks to observe which combinations applied to this framework were most effective in maximizing classification accuracy. Furthermore, the reasons why particular combinations were more effective than others is explored.
ContributorsMazboudi, Yassine Ahmad (Author) / Yang, Yezhou (Thesis director) / Ren, Yi (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Economics Program in CLAS (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description
Propaganda bots are malicious bots on Twitter that spread divisive opinions and support political accounts. This project is based on detecting propaganda bots on Twitter using machine learning. Once I began to observe patterns within propaganda followers on Twitter, I determined that I could train algorithms to detect

Propaganda bots are malicious bots on Twitter that spread divisive opinions and support political accounts. This project is based on detecting propaganda bots on Twitter using machine learning. Once I began to observe patterns within propaganda followers on Twitter, I determined that I could train algorithms to detect these bots. The paper focuses on my development and process of training classifiers and using them to create a user-facing server that performs prediction functions automatically. The learning goals of this project were detailed, the focus of which was to learn some form of machine learning architecture. I needed to learn some aspect of large data handling, as well as being able to maintain these datasets for training use. I also needed to develop a server that would execute these functionalities on command. I wanted to be able to design a full-stack system that allowed me to create every aspect of a user-facing server that can execute predictions using the classifiers that I design.
Throughout this project, I decided on a number of learning goals to consider it a success. I needed to learn how to use the supporting libraries that would help me to design this system. I also learned how to use the Twitter API, as well as create the infrastructure behind it that would allow me to collect large amounts of data for machine learning. I needed to become familiar with common machine learning libraries in Python in order to create the necessary algorithms and pipelines to make predictions based on Twitter data.
This paper details the steps and decisions needed to determine how to collect this data and apply it to machine learning algorithms. I determined how to create labelled data using pre-existing Botometer ratings, and the levels of confidence I needed to label data for training. I use the scikit-learn library to create these algorithms to best detect these bots. I used a number of pre-processing routines to refine the classifiers’ precision, including natural language processing and data analysis techniques. I eventually move to remotely-hosted versions of the system on Amazon web instances to collect larger amounts of data and train more advanced classifiers. This leads to the details of my final implementation of a user-facing server, hosted on AWS and interfacing over Gmail’s IMAP server.
The current and future development of this system is laid out. This includes more advanced classifiers, better data analysis, conversions to third party Twitter data collection systems, and user features. I detail what it is I have learned from this exercise, and what it is I hope to continue working on.
ContributorsPeterson, Austin (Author) / Yang, Yezhou (Thesis director) / Sadasivam, Aadhavan (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132272-Thumbnail Image.png
Description
The development of stab-resistant Kevlar armor has been an ongoing field of research
since the late 1990s, with the ultimate goal of improving the multi-threat capabilities of
traditional soft-body armor while significantly improving its protective efficiency - the amount
of layers of armor material required to defeat threats. To create a novel, superior

The development of stab-resistant Kevlar armor has been an ongoing field of research
since the late 1990s, with the ultimate goal of improving the multi-threat capabilities of
traditional soft-body armor while significantly improving its protective efficiency - the amount
of layers of armor material required to defeat threats. To create a novel, superior materials
system to reinforce Kevlar armor for the Norica Capstone project, this thesis set out to
synthesize, recover, and characterize zinc oxide nanowire colloids.

The materials synthesized were successfully utilized in the wider Capstone effort to
dramatically enhance the protective abilities of Kevlar, while the data obtained on the 14
hydrothermal synthesis attempts and numerous challenges at recovery provided critical
information on the synthesis parameters involved in the reliable, scalable mass production of the
nanomaterial additive. Additionally, recovery was unconventionally facilitated in the absence of
a vacuum filtration apparatus with nanoscale filters by intentionally inducing electrostatic
agglomeration of the nanowires during standard gravity filtration. The subsequent application of
these nanowires constituted a pioneering use in the production of nanowire-reinforced
STF-based Kevlar coatings, and support the future development and, ultimately, the
commercialization of lighter and more-protective soft armor systems.
ContributorsDurso, Michael Nathan (Author) / Tongay, Sefaattin (Thesis director) / Zhuang, Houlong (Committee member) / Materials Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description
In the field of machine learning, reinforcement learning stands out for its ability to explore approaches to complex, high dimensional problems that outperform even expert humans. For robotic locomotion tasks reinforcement learning provides an approach to solving them without the need for unique controllers. In this thesis, two reinforcement learning

In the field of machine learning, reinforcement learning stands out for its ability to explore approaches to complex, high dimensional problems that outperform even expert humans. For robotic locomotion tasks reinforcement learning provides an approach to solving them without the need for unique controllers. In this thesis, two reinforcement learning algorithms, Deep Deterministic Policy Gradient and Group Factor Policy Search are compared based upon their performance in the bipedal walking environment provided by OpenAI gym. These algorithms are evaluated on their performance in the environment and their sample efficiency.
ContributorsMcDonald, Dax (Author) / Ben Amor, Heni (Thesis director) / Yang, Yezhou (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2018-12
132909-Thumbnail Image.png
Description
This thesis details the design and construction of a torque-controlled robotic gripper for use with the Pheeno swarm robotics platform. This project required expertise from several fields of study including: robotic design, programming, rapid prototyping, and control theory. An electronic Inertial Measurement Unit and a DC Motor were both used

This thesis details the design and construction of a torque-controlled robotic gripper for use with the Pheeno swarm robotics platform. This project required expertise from several fields of study including: robotic design, programming, rapid prototyping, and control theory. An electronic Inertial Measurement Unit and a DC Motor were both used along with 3D printed plastic components and an electronic motor control board to develop a functional open-loop controlled gripper for use in collective transportation experiments. Code was developed that effectively acquired and filtered rate of rotation data alongside other code that allows for straightforward control of the DC motor through experimentally derived relationships between the voltage applied to the DC motor and the torque output of the DC motor. Additionally, several versions of the physical components are described through their development.
ContributorsMohr, Brennan (Author) / Berman, Spring (Thesis director) / Ren, Yi (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / School for Engineering of Matter,Transport & Enrgy (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05