Matching Items (13)
171908-Thumbnail Image.png
Description
This thesis presents the development of idiographic models (i.e., single subject or N = 1) of walking behavior as a means of facilitating the design of control systems to optimize mobile health (mHealth) interventions for sedentary adults. Model-on-Demand (MoD), an adaptive modeling technique, is demonstrated as an ideal method for

This thesis presents the development of idiographic models (i.e., single subject or N = 1) of walking behavior as a means of facilitating the design of control systems to optimize mobile health (mHealth) interventions for sedentary adults. Model-on-Demand (MoD), an adaptive modeling technique, is demonstrated as an ideal method for modeling nonlinear systems with noise on a simulated continuously stirred tank reactor (CSTR). Comparing MoD to AutoRegressive with eXogenous input (ARX) estimation, MoD outperforms ARX in terms of addressing both nonlinearity and noise in the CSTR system. With the CSTR system as an initial proof of concept, MoD is then used to model individual walking behavior using intervention data from participants of HeartSteps, a walking intervention that studies the effect of within-day suggestions. Given the number of possible measured features from which to design the MoD models, as well as the number of model parameters that influence the model’s performance, optimizing MoD models through exhaustive search is infeasible. Consequently, a discrete implementation of simultaneous perturbation stochastic approximation (DSPSA) is shown to be an efficient algorithm to find optimal models of walking behavior. Combining MoD with DSPSA, models of walking behavior were developed using participant data from Just Walk, a day-to-day walking intervention; MoD outperformed ARX models on both estimation and validation data. DSPSA was also applied to ARX modeling, highlighting the use of DSPSA to not only search over model parameters and features but also data partitioning, as DSPSA was used to evaluate models under various combinations of estimation and validation data from a single participant’s walking data. Results of this thesis point to ARX with DSPSA as a routine means for dynamic model estimation in large-scale behavioral intervention settings.
ContributorsKha, Rachael T (Author) / Rivera, Daniel E (Thesis advisor) / Deng, Shuguang (Committee member) / Muhich, Christopher (Committee member) / Arizona State University (Publisher)
Created2022
162018-Thumbnail Image.png
Description
Behavior-driven obesity has become one of the most challenging global epidemics since the 1990s, and is presently associated with the leading causes of death in the U.S. and worldwide, including diabetes, cardiovascular disease, strokes, and some forms of cancer. The use of system identification and control engineering principles in the

Behavior-driven obesity has become one of the most challenging global epidemics since the 1990s, and is presently associated with the leading causes of death in the U.S. and worldwide, including diabetes, cardiovascular disease, strokes, and some forms of cancer. The use of system identification and control engineering principles in the design of novel and perpetually adaptive behavioral health interventions for promoting physical activity and healthy eating has been the central theme in many recent contributions. However, the absence of experimental studies specifically designed with the purpose of developing control-oriented behavioral models has restricted prior efforts in this domain to the use of hypothetical simulations to demonstrate the potential viability of these interventions. In this dissertation, the use of first-of-a-kind, real-life experimental results to develop dynamic, participant-validated behavioral models essential for the design and evaluation of optimized and adaptive behavioral interventions is examined. Following an intergenerational approach, the first part of this work aims to develop a dynamical systems model of intrauterine fetal growth with the prime goal of predicting infant birth weight, which has been associated with subsequent childhood and adult-onset obesity. The use of longitudinal input-output data from the “Healthy Mom Zone” intervention study has enabled the estimation and validation of this fetoplacental model. The second part establishes a set of data-driven behavioral models founded on Social Cognitive Theory (SCT). The “Just Walk” intervention experiment, developed at Arizona State University using system identification principles, has lent a unique opportunity to estimate and validate both black-box and semiphysical SCT models for predicting physical activity behavior. Further, this dissertation addresses some of the model estimation challenges arising from the limitations of “Just Walk”, including the need for developing nontraditional modeling approaches for short datasets, as well as delivers a new theoretical and algorithmic framework for structured state-space model estimation that can be used in a broader set of application domains. Finally, adaptive closed-loop intervention simulations of participant-validated SCT models from “Just Walk” are presented using a Hybrid Model Predictive Control (HMPC) control law. A simple HMPC controller reconfiguration strategy for designing both single- and multi-phase intervention designs is proposed.
ContributorsFreigoun, Mohammad T (Author) / Raupp, Gregory B (Thesis advisor) / Tsakalis, Konstantinos S (Thesis advisor) / Spanias, Andreas S (Committee member) / Forzani, Erica S (Committee member) / Muhich, Christopher L (Committee member) / Arizona State University (Publisher)
Created2021
193493-Thumbnail Image.png
Description
According to Our World in Data, the industry sector contributes approximately 5.2 percent of the world's greenhouse gas emissions in 2016 [1]. Of that percentage, the cement industry contributes approximately 3 percent, thus accounting for more than 57 percent of all greenhouse gas emissions within the industry sector. Industrial-scale heating

According to Our World in Data, the industry sector contributes approximately 5.2 percent of the world's greenhouse gas emissions in 2016 [1]. Of that percentage, the cement industry contributes approximately 3 percent, thus accounting for more than 57 percent of all greenhouse gas emissions within the industry sector. Industrial-scale heating that is powered by renewable energy sources has the potential to combat this issue. This paper aims to analyze and model the Reverse Brayton Cycle to be used as a heat pump in a novel cement production system. The Simple Reverse Brayton Cycle and its potential concerning performance indicators such as coefficient of performance and scalability are determined. A Regenerative Brayton cycle is modeled in MATLAB® programming in order to be optimized and compared to conventional processes that require higher temperatures. Traditional manufacturing methods are discussed. Furthermore, possible methods of improvement are explored to view its effect on performance and temperatures between stages within the cycle.
ContributorsRivera, Daniel E (Author) / Phelan, Patrick (Thesis advisor) / Milcarek, Ryan (Committee member) / Calhoun, Ronald (Committee member) / Arizona State University (Publisher)
Created2024
187602-Thumbnail Image.png
Description
Anthropogenic processes have increased the concentration of toxic Se, As and N in water. Oxo-anions of these species are poisonous to aquatic and terrestrial life. Current remediation techniques have low selectivity towards their removal. Understanding the chemistry and physics which control oxo-anion adsorption on metal oxide and the catalytic nitrate

Anthropogenic processes have increased the concentration of toxic Se, As and N in water. Oxo-anions of these species are poisonous to aquatic and terrestrial life. Current remediation techniques have low selectivity towards their removal. Understanding the chemistry and physics which control oxo-anion adsorption on metal oxide and the catalytic nitrate reduction to inform improved remediation technologies can be done using Density functional theory (DFT) calculations. The adsorption of selenate, selenite, and arsenate was investigated on the alumina and hematite to inform sorbent design strategies. Adsorption energies were calculated as a function of surface structure, composition, binding motif, and pH within a hybrid implicit-explicit solvation strategy. Correlations between surface property descriptors including water network structure, cationic species identity, and facet and the adsorption energies of the ions show that the surface water network controls the adsorption energy more than any other, including the cationic species of the metal-oxide. Additionally, to achieve selectivity for selenate over sulphate, differences in their electronic structure must be exploited, for example by the reduction of selenate to selenite by Ti3+ cations. Thermochemical or electrochemical reduction pathways to convert NO3- to N2 or NH3, which are benign or value-added products, respectively are examined over single-atom electrocatalysts (SAC) in Cu. The activity and selectivity for nitrate reduction are compared with the competitive hydrogen evolution reaction (HER). Cu suppresses HER but produces toxic NO2- because of a high activation barrier for cleaving the second N-O bond. SACs provide secondary sites for reaction and break traditional linear scaling relationships. Ru-SACs selectively produce NH3 because N-O bond scission is facile, and the resulting N remains isolated on SAC sites; reacting with H+ from solvating H2O to form ammonia. Conversely, Pd-SAC forms N2 because the reduced N* atoms migrate to the Cu surface, which has a low H availability, allowing N atoms to combine to N2. This relation between N* binding preference and reduction product is demonstrated across an array of SAC elements. Hence, the solvation effects on the surface critically alter the activity of adsorption and catalysis and the removal of toxic pollutants can be improved by altering the surface water network.
ContributorsGupta, Srishti (Author) / Muhich, Christopher L (Thesis advisor) / Singh, Arunima (Committee member) / Emady, Heather (Committee member) / Westerhoff, Paul (Committee member) / Deng, Shuguang (Committee member) / Arizona State University (Publisher)
Created2023
193425-Thumbnail Image.png
Description
Cyclical chemical looping involves the thermal reduction of metal oxide to release O2 at high temperatures, followed by its oxidation using O-containing molecules like O2, H2O, or CO2. This process is a promising method for solar thermochemical water splitting (STCH), oxygen separation, and thermochemical energy storage (TCES). The efficiency and

Cyclical chemical looping involves the thermal reduction of metal oxide to release O2 at high temperatures, followed by its oxidation using O-containing molecules like O2, H2O, or CO2. This process is a promising method for solar thermochemical water splitting (STCH), oxygen separation, and thermochemical energy storage (TCES). The efficiency and economic viability of this process hinge on the thermodynamics of metal oxide reduction. This dissertation presents innovative methods to enhance the performance of these processes, with a specific focus on STCH and TCES by advancing thermodynamic characterization and screening of potential metal oxides, thereby reducing H2 costs.A novel CALPHAD approach, the CrossFit Compound Energy Formalism (CEF), integrates theoretical (density functional theory) and experimental (thermogravimetric) data to develop thermodynamic models for desired materials. The CrossFit-CEF was applied to BaxSr1-xFeO3-δ identifying matching thermodynamics and off-stoichiometric values to literature (~100-180 kJ/mol O2 reduction enthalpies across the BaxSr1-xFeO3-δ compositional range). Comparisons with the traditional van ‘t Hoff thermodynamic extraction technique reveal that the CrossFit-CEF method significantly outperforms conventional methods. For instance, the CEF method was employed to extract thermodynamic data for CaFexMn1-xO3-δ and identify optimal TCES CaFexMn1-xO3-δ compositions. The CrossFit-CEF method found the same thermodynamic trends on less than half the data utilized in a van ‘t Hoff approach and determined that the optimal CaFexMn1-xO3-δ composition had the minimal Fe concentration synthesized (x=0.625), achieving ~60 kJ/mol TCES. Bayesian Inference was employed was employed to expedite data collection. When combined with the CrossFit-CEF method, Bayesian Inference assesses the likelihood that the current model accurately describes the data, providing confidence intervals for the model. This approach reduces the amount of data needed for accurate thermodynamic modeling by 50%. Finally, the CrossFit-CEF and Bayesian methods are integrated into a system-level STCH model to optimize and accelerate materials design for specific plant operating conditions. Overall, this dissertation introduces methods that yield more accurate thermodynamic models with reduced data requirements. The time saved in data collection enables screening of more materials, expediting material identification and optimization. The materials identified through these techniques are expected to enhance chemical looping cycles, leading to increased H2 production efficiency and reduced costs.
ContributorsWilson, Steven A (Author) / Muhich, Christopher L (Thesis advisor) / Rivera, Daniel E (Committee member) / Stechel, Ellen B (Committee member) / Lin, Jerry (Committee member) / Deng, Shuguang (Committee member) / Arizona State University (Publisher)
Created2024
156893-Thumbnail Image.png
Description
Attaining a sufficiently large critical current density (Jc) in magnetic-barrier Josephson junctions has been one of the greatest challenges to the development of dense low-power superconductor memories. Many experimentalists have used various combinations of superconductor (S) and ferromagnetic (F) materials, with limited success towards the goal of attaining a useful

Attaining a sufficiently large critical current density (Jc) in magnetic-barrier Josephson junctions has been one of the greatest challenges to the development of dense low-power superconductor memories. Many experimentalists have used various combinations of superconductor (S) and ferromagnetic (F) materials, with limited success towards the goal of attaining a useful Jc. This trial-and-error process is expensive and time consuming. An improvement in the fundamental understanding of transport through the ferromagnetic layers and across the superconductor-ferromagnetic interface could potentially give fast, accurate predictions of the transport properties in devices and help guide the experimental studies.

In this thesis, parameters calculated using density functional methods are used to model transport across Nb/0.8 nm Fe/Nb/Nb and Nb/3.8 nm Ni /Nb/Nb Josephson junctions. The model simulates the following transport processes using realistic parameters from density functional theory within the generalized gradient approximation: (a) For the first electron of the Cooper pair in the superconductor to cross the interface- conservation of energy and crystal momentum parallel to the interface (kll). (b) For the second electron to be transmitted coherently- satisfying the Andreev reflection interfacial boundary conditions and crossing within a coherence time, (c) For transmission of the coherent pair through the ferromagnetic layer- the influence of the exchange field on the electrons’ wavefunction and (d) For transport through the bulk and across the interfaces- the role of pair-breaking from spin-flip scattering of the electrons. Our model shows the utility of using realistic electronic-structure band properties of the materials used, rather the mean-field exchange energy and empirical bulk and interfacial material parameters used by earlier workers. [Kontos et al. Phys. Rev Lett, 93(13), 137001. (2004); Demler et al. Phys. Rev. B, 55(22), 15174. (1997)].

The critical current densities obtained from out model for Nb/0.8 nm Fe/Nb is 104 A/cm2 and for Nb/3.8 nm Ni/Nb is 7.1*104 A/cm2. These values fall very close to those observed experimentally- i.e. for Nb/0.8 nm Fe/Nb is 8*103 A/cm2 [Robinson et al" Phys. Rev. B 76, no. 9, 094522. (2007)] and for Nb/3.8 nm of Ni/Nb is 3*104 A/cm2 [Blum et al Physical review letters 89, no. 18, 187004. (2002). This indicates that our approach could potentially be useful in optimizing the properties of ferromagnetic-barrier structures for use in low-energy superconducting memories.
ContributorsKalyana Raman, Dheepak Surya (Author) / Newman, Nathan (Thesis advisor) / Muhich, Christopher L (Committee member) / Ferry, David K. (Committee member) / Arizona State University (Publisher)
Created2018
155115-Thumbnail Image.png
Description
The lack of healthy behaviors - such as physical activity and balanced diet - in

modern society is responsible for a large number of diseases and high mortality rates in

the world. Adaptive behavioral interventions have been suggested as a way to promote

sustained behavioral changes to address these issues. These adaptive interventions

can

The lack of healthy behaviors - such as physical activity and balanced diet - in

modern society is responsible for a large number of diseases and high mortality rates in

the world. Adaptive behavioral interventions have been suggested as a way to promote

sustained behavioral changes to address these issues. These adaptive interventions

can be modeled as closed-loop control systems, and thus applying control systems

engineering and system identification principles to behavioral settings might provide

a novel way of improving the quality of such interventions.

Good understanding of the dynamic processes involved in behavioral experiments

is a fundamental step in order to design such interventions with control systems ideas.

In the present work, two different behavioral experiments were analyzed under the

light of system identification principles and modelled as dynamic systems.

In the first study, data gathered over the course of four days served as the basis for

ARX modeling of the relationship between psychological constructs (negative affect

and self-efficacy) and the intensity of physical activity. The identified models suggest

that this behavioral process happens with self-regulation, and that the relationship

between negative affect and self-efficacy is represented by a second order underdamped

system with negative gain, while the relationship between self-efficacy and physical

activity level is an overdamped second order system with positive gain.

In the second study, which consisted of single-bouts of intense physical activity,

the relation between a more complex set of behavioral variables was identified as a

semi-physical model, with a theoretical set of system equations derived from behavioral

theory. With a prescribed set of physical activity intensities, it was found that less fit

participants were able to get higher increases in affective state, and that self-regulation

processes are also involved in the system.
ContributorsSeixas, Gustavo Mesel Lobo (Author) / Rivera, Daniel E (Thesis advisor) / Peet, Matthew M (Committee member) / Alford, Terry L. (Committee member) / Arizona State University (Publisher)
Created2016
154920-Thumbnail Image.png
Description
Behavioral health problems such as physical inactivity are among the main causes of mortality around the world. Mobile and wireless health (mHealth) interventions offer the opportunity for applying control engineering concepts in behavioral change settings. Social Cognitive Theory (SCT) is among the most influential theories of health behavior and has

Behavioral health problems such as physical inactivity are among the main causes of mortality around the world. Mobile and wireless health (mHealth) interventions offer the opportunity for applying control engineering concepts in behavioral change settings. Social Cognitive Theory (SCT) is among the most influential theories of health behavior and has been used as the conceptual basis of many behavioral interventions. This dissertation examines adaptive behavioral interventions for physical inactivity problems based on SCT using system identification and control engineering principles. First, a dynamical model of SCT using fluid analogies is developed. The model is used throughout the dissertation to evaluate system identification approaches and to develop control strategies based on Hybrid Model Predictive Control (HMPC). An initial system identification informative experiment is designed to obtain basic insights about the system. Based on the informative experimental results, a second optimized experiment is developed as the solution of a formal constrained optimization problem. The concept of Identification Test Monitoring (ITM) is developed for determining experimental duration and adjustments to the input signals in real time. ITM relies on deterministic signals, such as multisines, and uncertainty regions resulting from frequency domain transfer function estimation that is performed during experimental execution. ITM is motivated by practical considerations in behavioral interventions; however, a generalized approach is presented for broad-based multivariable application settings such as process control. Stopping criteria for the experimental test utilizing ITM are developed using both open-loop and robust control considerations.

A closed-loop intensively adaptive intervention for physical activity is proposed relying on a controller formulation based on HMPC. The discrete and logical features of HMPC naturally address the categorical nature of the intervention components that include behavioral goals and reward points. The intervention incorporates online controller reconfiguration to manage the transition between the behavioral initiation and maintenance training stages. Simulation results are presented to illustrate the performance of the system using a model for a hypothetical participant under realistic conditions that include uncertainty. The contributions of this dissertation can ultimately impact novel applications of cyberphysical system in medical applications.
ContributorsMartín Moreno, César Antonio (Author) / Rivera, Daniel E (Thesis advisor) / Hekler, Eric B. (Committee member) / Peet, Matthew M (Committee member) / Tsakalis, Konstantinos S (Committee member) / Arizona State University (Publisher)
Created2016
153276-Thumbnail Image.png
Description
Cigarette smoking remains a major global public health issue. This is partially due to the chronic and relapsing nature of tobacco use, which contributes to the approximately 90% quit attempt failure rate. The recent rise in mobile technologies has led to an increased ability to frequently measure smoking behaviors and

Cigarette smoking remains a major global public health issue. This is partially due to the chronic and relapsing nature of tobacco use, which contributes to the approximately 90% quit attempt failure rate. The recent rise in mobile technologies has led to an increased ability to frequently measure smoking behaviors and related constructs over time, i.e., obtain intensive longitudinal data (ILD). Dynamical systems modeling and system identification methods from engineering offer a means to leverage ILD in order to better model dynamic smoking behaviors. In this dissertation, two sets of dynamical systems models are estimated using ILD from a smoking cessation clinical trial: one set describes cessation as a craving-mediated process; a second set was reverse-engineered and describes a psychological self-regulation process in which smoking activity regulates craving levels. The estimated expressions suggest that self-regulation more accurately describes cessation behavior change, and that the psychological self-regulator resembles a proportional-with-filter controller. In contrast to current clinical practice, adaptive smoking cessation interventions seek to personalize cessation treatment over time. An intervention of this nature generally reflects a control system with feedback and feedforward components, suggesting its design could benefit from a control systems engineering perspective. An adaptive intervention is designed in this dissertation in the form of a Hybrid Model Predictive Control (HMPC) decision algorithm. This algorithm assigns counseling, bupropion, and nicotine lozenges each day to promote tracking of target smoking and craving levels. Demonstrated through a diverse series of simulations, this HMPC-based intervention can aid a successful cessation attempt. Objective function weights and three-degree-of-freedom tuning parameters can be sensibly selected to achieve intervention performance goals despite strict clinical and operational constraints. Such tuning largely affects the rate at which peak bupropion and lozenge dosages are assigned; total post-quit smoking levels, craving offset, and other performance metrics are consequently affected. Overall, the interconnected nature of the smoking and craving controlled variables facilitate the controller's robust decision-making capabilities, even despite the presence of noise or plant-model mismatch. Altogether, this dissertation lays the conceptual and computational groundwork for future efforts to utilize engineering concepts to further study smoking behaviors and to optimize smoking cessation interventions.
ContributorsTimms, Kevin Patrick (Author) / Rivera, Daniel E (Thesis advisor) / Frakes, David (Committee member) / Nielsen, David R (Committee member) / Arizona State University (Publisher)
Created2014
153096-Thumbnail Image.png
Description
Control engineering offers a systematic and efficient approach to optimizing the effectiveness of individually tailored treatment and prevention policies, also known as adaptive or ``just-in-time'' behavioral interventions. These types of interventions represent promising strategies for addressing many significant public health concerns. This dissertation explores the development of decision algorithms for

Control engineering offers a systematic and efficient approach to optimizing the effectiveness of individually tailored treatment and prevention policies, also known as adaptive or ``just-in-time'' behavioral interventions. These types of interventions represent promising strategies for addressing many significant public health concerns. This dissertation explores the development of decision algorithms for adaptive sequential behavioral interventions using dynamical systems modeling, control engineering principles and formal optimization methods. A novel gestational weight gain (GWG) intervention involving multiple intervention components and featuring a pre-defined, clinically relevant set of sequence rules serves as an excellent example of a sequential behavioral intervention; it is examined in detail in this research.

 

A comprehensive dynamical systems model for the GWG behavioral interventions is developed, which demonstrates how to integrate a mechanistic energy balance model with dynamical formulations of behavioral models, such as the Theory of Planned Behavior and self-regulation. Self-regulation is further improved with different advanced controller formulations. These model-based controller approaches enable the user to have significant flexibility in describing a participant's self-regulatory behavior through the tuning of controller adjustable parameters. The dynamic simulation model demonstrates proof of concept for how self-regulation and adaptive interventions influence GWG, how intra-individual and inter-individual variability play a critical role in determining intervention outcomes, and the evaluation of decision rules.

 

Furthermore, a novel intervention decision paradigm using Hybrid Model Predictive Control framework is developed to generate sequential decision policies in the closed-loop. Clinical considerations are systematically taken into account through a user-specified dosage sequence table corresponding to the sequence rules, constraints enforcing the adjustment of one input at a time, and a switching time strategy accounting for the difference in frequency between intervention decision points and sampling intervals. Simulation studies illustrate the potential usefulness of the intervention framework.

The final part of the dissertation presents a model scheduling strategy relying on gain-scheduling to address nonlinearities in the model, and a cascade filter design for dual-rate control system is introduced to address scenarios with variable sampling rates. These extensions are important for addressing real-life scenarios in the GWG intervention.
ContributorsDong, Yuwen (Author) / Rivera, Daniel E (Thesis advisor) / Dai, Lenore (Committee member) / Forzani, Erica (Committee member) / Rege, Kaushal (Committee member) / Si, Jennie (Committee member) / Arizona State University (Publisher)
Created2014