Matching Items (20)
136419-Thumbnail Image.png
Description
A literature review summarizing the current status of conservation efforts of the Mojave Desert tortoise (Gopherus agassizii) including a brief overview of the Endangered Species Act (ESA) and its applicability to this species' conservation. A genetic and physiological comparison of the morphologically similar Mojave species with the Sonoran (Gopherus morafkai)

A literature review summarizing the current status of conservation efforts of the Mojave Desert tortoise (Gopherus agassizii) including a brief overview of the Endangered Species Act (ESA) and its applicability to this species' conservation. A genetic and physiological comparison of the morphologically similar Mojave species with the Sonoran (Gopherus morafkai) species proceeded by an analysis of if and how the ESA should apply to the Sonoran population. Analysis of current plans and interagency cooperations followed by a multi-step proposal on how best to conserve the Sonoran population of Desert tortoise.
ContributorsKulik, Elise Chikako (Author) / Kusumi, Kenro (Thesis director) / Tollis, Marc (Committee member) / Wilson Sayres, Melissa (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Life Sciences (Contributor)
Created2015-05
135868-Thumbnail Image.png
Description
This work examines one dimension of the effect that complex human transport systems have on the spread of Chikungunya Virus (CHIKV) in the Caribbean from 2013 to 2015. CHIKV is transmitted by mosquitos and its novel spread through the Caribbean islands provided a chance to examine disease transmission through complex

This work examines one dimension of the effect that complex human transport systems have on the spread of Chikungunya Virus (CHIKV) in the Caribbean from 2013 to 2015. CHIKV is transmitted by mosquitos and its novel spread through the Caribbean islands provided a chance to examine disease transmission through complex human transportation systems. Previous work by Cauchemez et al. had shown a simple distance-based model successfully predict CHIKV spread in the Caribbean using Markov chain Monte Carlo (MCMC) statistical methods. A MCMC simulation is used to evaluate different transportation methods (air travel, cruise ships, and local maritime traffic) for the primary transmission patterns through linear regression. Other metrics including population density to account for island size variation and dengue fever incidence rates as a proxy for vector control and health spending were included. Air travel and cruise travel were gathered from monthly passenger arrivals by island. Local maritime traffic is approximated with a gravity model proxy incorporating GDP-per-capita and distance and historic dengue rates were used for determine existing vector control measures for the islands. The Caribbean represents the largest cruise passenger market in the world, cruise ship arrivals were expected to show the strongest signal; however, the gravity model representing local traffic was the best predictor of infection routes. The early infected islands (<30 days) showed a heavy trend towards an alternate primary transmission but our consensus model able to predict the time until initial infection reporting with 94.5% accuracy for islands 30 days post initial reporting. This result can assist public health entities in enacting measures to mitigate future epidemics and provide a modelling basis for determining transmission modes in future CHIKV outbreaks.
ContributorsFries, Brendan F (Author) / Perrings, Charles (Thesis director) / Wilson Sayres, Melissa (Committee member) / Morin, Ben (Committee member) / School of Life Sciences (Contributor) / Department of Military Science (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
Description
Tremendous phenotypic variation exists across people with Turner syndrome (45,X). This variation likely stems from differential dosage of genes on the X chromosome. X-inactivation is the process whereby all X chromosomes in excess of one are silenced. However, about 15% of the genes on the silenced X chromosome escape this

Tremendous phenotypic variation exists across people with Turner syndrome (45,X). This variation likely stems from differential dosage of genes on the X chromosome. X-inactivation is the process whereby all X chromosomes in excess of one are silenced. However, about 15% of the genes on the silenced X chromosome escape this inactivation and are candidates for affecting phenotype in people with Turner syndrome. In this study we take an evolutionary approach to rank candidate genes that may contribute to phenotypic variation among people with Turner Syndrome. We incorporate analysis of patterns of DNA methylation from 46,XX and 45,X individuals, and estimates of variable X-inactivation status across 46,XX individuals, with patterns of gene expression conservation on the X chromosomes across five tissues and ten species. We find that genes that escape XCI are possible candidate genes for Turner syndrome phenotype, indicated by the constant levels of expression in escape genes and inactivated genes. Variation in these genes is expected to affect phenotype when dosage is altered from typical levels.
ContributorsSchaffer, Kara Nina (Author) / Wilson Sayres, Melissa (Thesis director) / Crook, Sharon (Committee member) / Narang, Pooja (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
136360-Thumbnail Image.png
Description
The modern web presents an opportunity for educators and researchers to create tools that are highly accessible. Because of the near-ubiquity of modern web browsers, developers who hope to create educational and analytical tools can reach a large au- dience by creating web applications. Using JavaScript, HTML, and other modern

The modern web presents an opportunity for educators and researchers to create tools that are highly accessible. Because of the near-ubiquity of modern web browsers, developers who hope to create educational and analytical tools can reach a large au- dience by creating web applications. Using JavaScript, HTML, and other modern web development technologies, Genie was developed as a simulator to help educators in biology, genetics, and evolution classrooms teach their students about population genetics. Because Genie was designed for the modern web, it is highly accessible to both educators and students, who can access the web application using any modern web browser on virtually any device. Genie demonstrates the efficacy of web devel- opment technologies for demonstrating and simulating complex processes, and it will be a unique educational tool for educators who teach population genetics.
ContributorsRoos, Benjamin Hirsch (Author) / Cartwright, Reed (Thesis director) / Wilson Sayres, Melissa (Committee member) / Mayron, Liam (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2015-05
132424-Thumbnail Image.png
Description
The highly conserved Notch signaling pathway regulates cell-cell communication pathways, cell fate, cell determination, cell death, embryonic development, and adult tissue pathways in metazoans. The Notch receptors and ligands that bind to Notch are single pass, transmembrane proteins that communicate cell to cell via juxtacrine signaling. There are reports of

The highly conserved Notch signaling pathway regulates cell-cell communication pathways, cell fate, cell determination, cell death, embryonic development, and adult tissue pathways in metazoans. The Notch receptors and ligands that bind to Notch are single pass, transmembrane proteins that communicate cell to cell via juxtacrine signaling. There are reports of the divergent function and localization of the Deltalike 3 (Dll3) ligand. In Mus musculus (an eutherin mammal) the DLL3 protein inhibits the Notch signaling pathway and is localized in the Golgi apparatus. In contrast, the DLL3 protein from zebrafish, Danio rerio (a teleost) activates Notch and is located on the cell surface. This study will focus on examining the evolutionary pathway/evolutionary similarities, localization, and function of the A. carolinensis dll3 gene in comparison to other vertebrate species. This is important because there is not much known about the evolutionary divergence of the DLL3 A. carolinensis protein, its function in Notch signaling, and its subcellular localization.
Evolutionary analysis of vertebrate DLL3 protein sequences using phylogenetic trees showed that D. rerio and A. carolinensis are more evolutionarily similar in comparison to M. musculus suggesting that they may have similar intracellular localization. However, immunofluorescence staining experiments showed that the A. carolinensis DLL3 protein co-localized significantly with an endoplasmic reticulum (ER) specific primary antibody. Since this protein is localized in the secretory system, similar to that of M. musculus DLL3, it suggests that its function is to inhibit the Notch signaling pathway. Protein sequence alignments were created that suggested that there is a region in the protein sequences where the lizard and mouse sequence are conserved, while the zebrafish sequence simultaneously varies. This region of the amino acid sequence could be responsible for the difference in localization and function of the protein in these two species.
ContributorsBoschi, Alexis (Author) / Wilson-Rawls, Jeanne (Thesis director) / Newbern, Jason (Committee member) / Wilson Sayres, Melissa (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132484-Thumbnail Image.png
Description
Hepatocellular carcinoma (HCC) is a type of liver cancer common in Sub-Saharan Africa and South East Asian countries. Each year more than 700,000 new cases and more than 600,000 deaths are recorded worldwide due to HCC. According to the American Cancer Society HCC is ranked the 5th most common cancer

Hepatocellular carcinoma (HCC) is a type of liver cancer common in Sub-Saharan Africa and South East Asian countries. Each year more than 700,000 new cases and more than 600,000 deaths are recorded worldwide due to HCC. According to the American Cancer Society HCC is ranked the 5th most common cancer worldwide with a male:female susceptibility ratio ranging between 2:1 and 8:1. HCC risk factors include lifestyle behaviors, such as persistent alcohol abuse and smoking, prolonged exposure to aflatoxins, chronic viral hepatitis infections, inherited metabolic diseases and non-alcoholic fatty liver diseases. To understand the genetic effects underlying sex-bias in HCC, it is necessary to include the sex chromosomes in genomics analyses. X and Y chromosomes are often discluded in genomics studies because of the technical and analytical challenges: sequence homology. The purpose of this thesis is to analyze the effects of sex chromosome complement aware read mapping to germline variant calling. 10 male and 10 female tumor adjacent samples from The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA LIHC) cohort were processed using sex-aware and default reference and the concordance of the two approaches was examined. We detected a higher disconcordance of 0.69% on variants called on the X chromosome and a disconcordance of 0.51% on variants called on the Y chromosomes for the reference and alternative alleles respectively compared to autosomes. Variants called on the REF/ALT genotypes had a disconcordances of 1.00%, 1.05%, 1.35% and 12.34% for the autosomes, chromosome 7, the X, and the Y chromosome, respectively. At the end of the project we concluded that the generated datasets showed the effect of sex-aware read mapping on variant calling. Though the data did not show the sites that can be called as variants in one dataset but not in the other, rather the concordance looked at sites that were called as variants in both data sets.
ContributorsPhiri, Lovender Teresa (Co-author) / Phiri, Lovender (Co-author) / Wilson Sayres, Melissa (Thesis director) / Buetow, Kenneth (Committee member) / Natri, Heini (Committee member) / School of Life Sciences (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132980-Thumbnail Image.png
Description
Lactase persistence is the ability of adults to digest lactose in milk (Segurel & Bon, 2017). Mammals are generally distinguished by their mammary glands which gives females the ability to produce milk and feed their newborn children. The new born therefore requires the ability to breakdown the lactose in the

Lactase persistence is the ability of adults to digest lactose in milk (Segurel & Bon, 2017). Mammals are generally distinguished by their mammary glands which gives females the ability to produce milk and feed their newborn children. The new born therefore requires the ability to breakdown the lactose in the milk to ensure its proper digestion (Segurel & Bon, 2017). Generally, humans lose the expression of lactase after weaning, which prevents them being able to breakdown lactose from dairy (Flatz, 1987).
My research is focused on the people of Turkana, a human pastoral population inhabiting Northwest Kenya. The people of Turkana are Nilotic people that are native to the Turkana district. There are currently no conclusive studies done on evidence for genetic lactase persistence in Turkana. Therefore, my research will be on the evolution of lactase persistence in the people of Turkana. The goal of this project is to investigate the evolutionary history of two genes with known involvement in lactase persistence, LCT and MCM6, in the Turkana. Variants in these genes have previously been identified to result in the ability to digest lactose post-weaning age. Furthermore, an additional study found that a closely related population to the Turkana, the Massai, showed stronger signals of recent selection for lactase persistence than Europeans in these genes. My goal is to characterize known variants associated with lactase persistence by calculating their allele frequencies in the Turkana and conduct selection scans to determine if LCT/MCM6 show signatures of positive selection. In doing this, we conducted a pilot study consisting of 10 female Turkana individuals and 10 females from four different populations from the 1000 genomes project namely: the Yoruba in Ibadan, Nigeria (YRI); Luhya in Webuye, Kenya; Utah Residents with Northern and Western European Ancestry (CEU); and the Southern Han Chinese. The allele frequency calculation suggested that the CEU (Utah Residents with Northern and Western European Ancestry) population had a higher lactase persistence associated allele frequency than all the other populations analyzed here, including the Turkana population. Our Tajima’s D calculations and analysis suggested that both the Turkana population and the four haplotype map populations shows signatures of positive selection in the same region. The iHS selection scans we conducted to detect signatures of positive selection on all five populations showed that the Southern Han Chinese (CHS), the LWK (Luhya in Webuye, Kenya) and the YRI (Yoruba in Ibadan, Nigeria) populations had stronger signatures of positive selection than the Turkana population. The LWK (Luhya in Webuye, Kenya) and the YRI (Yoruba in Ibadan, Nigeria) populations showed the strongest signatures of positive selection in this region. This project serves as a first step in the investigation of lactase persistence in the Turkana population and its evolution over time.
ContributorsJobe, Ndey Bassin (Author) / Wilson Sayres, Melissa (Thesis director) / Paaijmans, Krijn (Committee member) / Taravella, Angela (Committee member) / School of Earth and Space Exploration (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133149-Thumbnail Image.png
Description
Bats (order Chiroptera) are the longest lived mammals for their size, with particularly extreme longevity evolving in the family Vespertilionidae, or vesper bats. Because of this, researchers have proposed using bats to study ageing and cancer suppression. Here, we study gene duplications across mammalian genomes and show that, similar to

Bats (order Chiroptera) are the longest lived mammals for their size, with particularly extreme longevity evolving in the family Vespertilionidae, or vesper bats. Because of this, researchers have proposed using bats to study ageing and cancer suppression. Here, we study gene duplications across mammalian genomes and show that, similar to previous findings in elephants, bats have experienced duplications of the tumor suppressor gene TP53, including five genomic copies in the genome of the little brown bat (Myotis lucifugus) and two copies in Brandt's bat (Myotis brandtii). These species can live 37 and 41 years, respectively, despite having an adult body mass of only ~7 grams. We use evolutionary genetics and next generation sequencing approaches to show that positive selection has acted on the TP53 locus across bats, and two recently duplicated TP53 gene copies in the little brown bat are both highly conserved and expressed, suggesting they are functional. We also report an extraordinary genomic copy number expansion of the tumor suppressor gene FBXO31 in the common ancestor of vesper bats which accelerated in the Myotis lineage, leading to 34\u201457 copies and the expression of 20 functional FBXO31 homologs in Brandt's bat. As FBXO31 directs the degradation of MDM2, which is a negative regulator of TP53, we suggest that increased expression of both FBXO31 and TP53 may be related to an enhanced DNA-damage response to genotoxic stress brought on by long lifespans and rapid metabolic rates in bats.
ContributorsSchneider-Utaka, Aika Kunigunda (Author) / Maley, Carlo (Thesis director) / Wilson Sayres, Melissa (Committee member) / Tollis, Marc (Committee member) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
Description
This project was designed to develop resources to highlight diverse career options for students achieving a degree within the School of Life Sciences. Many students have a very narrow view of what careers their degree prepares them for. In addition, if they have a career in mind, they have difficulty

This project was designed to develop resources to highlight diverse career options for students achieving a degree within the School of Life Sciences. Many students have a very narrow view of what careers their degree prepares them for. In addition, if they have a career in mind, they have difficulty selecting an appropriate degree that will prepare them for their intended career. The goal of this project was to provide a broader view of career options, as well as illustrate the requirements each student would need to meet in order to pursue these careers. This was done by interviewing five career professionals and developing a major map that corresponds to the specific requirements of that career.
ContributorsBaber, Ariel Kate Elven (Author) / Wilson Sayres, Melissa (Thesis director) / DeNardo, Dale (Committee member) / Downing, Virginia (Committee member) / School of Life Sciences (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
This creative thesis project aimed to create career development resources that School of Life Sciences majors could use to enhance their college experience, expand the breadth of relevant career options for School of Life Sciences majors, and confront and divert career problems through the implementation of these career development resources.

This creative thesis project aimed to create career development resources that School of Life Sciences majors could use to enhance their college experience, expand the breadth of relevant career options for School of Life Sciences majors, and confront and divert career problems through the implementation of these career development resources. Students encounter career problems when their intention and action diverge. These career problems may cause a student to stop their pursuit of a given career, change majors, or even stop schooling completely. It is the objective of this project to help resolve these career problems by introducing a career development resource flyer that educates the student about a given career, provides coursework to guide a student towards this career path, familiarize students with extracurricular efforts necessary for this position, propose valuable resources that the student can utilize to learn more about the career, and offer a question and answer portion for further career and professional understanding. In order to create these career development resource flyers a variety of professionals, both with and without relationships with Arizona State University were contacted and interviewed. The answers gathered from these interviews were then utilized to create the career flyers. The project was successful in creating five distinct career development resource flyers, as well as a blank template with instructions to be used in the future by the School of Life Sciences. The career development resource flyers will be utilized by the School of Life Sciences advising staff for future exploratory majors, but is not limited to just these students. Aspirations are set to create an expansive reservoir of these resources for future generations of students to access in hopes that they will be better suited to find a career path that they are passionate about and be better prepared to attain.
ContributorsGallegos, Darius Sloan (Author) / Wilson Sayres, Melissa (Thesis director) / Downing, Virginia (Committee member) / DeNardo, Dale (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05