Matching Items (3)
152311-Thumbnail Image.png
Description
Mobile robots are used in a broad range of application areas; e.g. search and rescue, reconnaissance, exploration, etc. Given the increasing need for high performance mobile robots, the area has received attention by researchers. In this thesis, critical control and control-relevant design issues for differential drive mobile robots is addressed.

Mobile robots are used in a broad range of application areas; e.g. search and rescue, reconnaissance, exploration, etc. Given the increasing need for high performance mobile robots, the area has received attention by researchers. In this thesis, critical control and control-relevant design issues for differential drive mobile robots is addressed. Two major themes that have been explored are the use of kinematic models for control design and the use of decentralized proportional plus integral (PI) control. While these topics have received much attention, there still remain critical questions which have not been rigorously addressed. In this thesis, answers to the following critical questions are provided: When is 1. a kinematic model sufficient for control design? 2. coupled dynamics essential? 3. a decentralized PI inner loop velocity controller sufficient? 4. centralized multiple-input multiple-output (MIMO) control essential? and how can one design the robot to relax the requirements implied in 1 and 2? In this thesis, the following is shown: 1. The nonlinear kinematic model will suffice for control design when the inner velocity (dynamic) loop is much faster (10X) than the slower outer positioning loop. 2. A dynamic model is essential when the inner velocity (dynamic) loop is less than two times faster than the slower outer positioning loop. 3. A decentralized inner loop PI velocity controller will be sufficient for accomplish- ing high performance control when the required velocity bandwidth is small, rel- ative to the peak dynamic coupling frequency. A rule-of-thumb which depends on the robot aspect ratio is given. 4. A centralized MIMO velocity controller is needed when the required bandwidth is large, relative to the peak dynamic coupling frequency. Here, the analysis in the thesis is sparse making the topic an area for future analytical work. Despite this, it is clearly shown that a centralized MIMO inner loop controller can offer increased performance vis- ́a-vis a decentralized PI controller. 5. Finally, it is shown how the dynamic coupling depends on the robot aspect ratio and how the coupling can be significantly reduced. As such, this can be used to ease the requirements imposed by 2 and 4 above.
ContributorsAnvari, Iman (Author) / Rodriguez, Armando A (Thesis advisor) / Si, Jenni (Committee member) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2013
168479-Thumbnail Image.png
Description
This dissertation presents a comprehensive study of modeling and control issues associated with nonholonomic differential drive mobile robots. The first part of dissertation focuses on modeling using Lagrangian mechanics. The dynamics is modeled as a two-input two-output (TITO) nonlinear model. Motor dynamics are also modeled. Trade studies are conducted to

This dissertation presents a comprehensive study of modeling and control issues associated with nonholonomic differential drive mobile robots. The first part of dissertation focuses on modeling using Lagrangian mechanics. The dynamics is modeled as a two-input two-output (TITO) nonlinear model. Motor dynamics are also modeled. Trade studies are conducted to shed light on critical vehicle design parameters, and how they impact static properties, dynamic properties, directional stability, coupling and overall vehicle design. An aspect ratio based dynamic decoupling condition is also presented. The second part of dissertation addresses design of linear time-invariant (LTI), multi-input multi-ouput (MIMO) fixed-structure H∞ controllers for the inner-loop velocity (v, ω) tracking system of the robot, motivated by a practical desire to design classically structured robust controllers. The fixed-structure H∞-optimal controllers are designed using Generalized Mixed Sensitivity(GMS) methodology to systematically shape properties at distinct loop breaking points. The H∞-control problem is solved using nonsmooth optimization techniques to compute locally optimal solutions. Matlab’s Robust Control toolbox (Hinfstruct and Systune) is used to solve the nonsmooth optimization. The dissertation also addresses the design of fixed-structure MIMO gain-scheduled H∞ controllers via GMS methodology. Trade-off studies are conducted to address the effect of vehicle design parameters on frequency and time domain properties of the inner-loop control system of mobile robot. The third part of dissertation focuses on the design of outer-loop position (x, y, θ) control system of mobile robot using real-time model predictive control (MPC) algorithms. Both linear time-varying (LTV) MPC and nonlinear MPC algorithms are discussed.The outer-loop performance of mobile robot is studied for two applications - 1) single robot trajectory tracking and multi-robot coordination in presence of obstacles, 2) maximum progress maneuvering on racetrack. The dissertation specifically addresses the impact of variation of c.g. position w.r.t. wheel-axle on directional maneuverability, peak control effort required to perform aggressive maneuvers, and overall position control performance. Detailed control relevant performance trade-offs associated with outer-loop position control are demonstrated through simulations in discrete time. Optimizations packages CPLEX(convex-QP in LTV-MPC) and ACADO(NLP in nonlinear-MPC) are used to solve the OCP in real time. All simulations are performed on Robot Operating System (ROS).
ContributorsMondal, Kaustav (Author) / Rodriguez, Armando A (Thesis advisor) / Berman, Spring M (Committee member) / Si, Jenni (Committee member) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2021
153730-Thumbnail Image.png
Description
This thesis addresses control design for fixed-wing air-breathing aircraft. Four aircraft with distinct dynamical properties are considered: a scram-jet powered hypersonic (100foot long, X-43 like, wedge shaped) aircraft with flexible modes operating near Mach 8, 85k ft, a NASA HiMAT (Highly Maneuverable Aircraft Technology) F-18 aircraft,

a McDonnell Douglas AV-8A

This thesis addresses control design for fixed-wing air-breathing aircraft. Four aircraft with distinct dynamical properties are considered: a scram-jet powered hypersonic (100foot long, X-43 like, wedge shaped) aircraft with flexible modes operating near Mach 8, 85k ft, a NASA HiMAT (Highly Maneuverable Aircraft Technology) F-18 aircraft,

a McDonnell Douglas AV-8A Harrier aircraft, and a Vought F-8 Crusader aircraft. A two-input two-output (TITO) longitudinal LTI (linear time invariant) dynamical model is used for each aircraft. Control design trade studies are conducted for each of the aircraft. Emphasis is placed on the hypersonic vehicle because of its complex nonlinear (unstable, non-minimum phase, flexible) dynamics and uncertainty associated with hypersonic flight (Mach $>$ 5, shocks and high temperatures on leading edges). Two plume models are used for the hypersonic vehicle – an old plume model and a new plume model. The old plume model is simple and assumes a typical decaying pressure distribution for aft nozzle. The new plume model uses Newtonian impact theory and a nonlinear solver to compute the aft nozzle pressure distribution. Multivariable controllers were generated using standard weighted $H_{\inf}$ mixed-sensitivity optimization as well as a new input disturbance weighted mixed-sensitivity framework that attempts to achieve good multivariable properties at both the controls (plant inputs) as well as the errors (plant outputs). Classical inner-outer (PD-PI) structures (partially centralized and decentralized) were also used. It is shown that while these classical (sometimes partially centralized PD-PI) structures could be used to generate comparable results to the multivariable controllers (e.g. for the hypersonic vehicle, Harrier, F-8), considerable tuning (iterative optimization) is often essential. This is especially true for the highly coupled hypersonic vehicle – thus justifying the need for a good multivariable control design tool. Fundamental control design tradeoffs for each aircraft are presented – comprehensively for the hypersonic aircraft. In short, the thesis attempts to shed light on when complex controllers are essential and when simple structures are sufficient for achieving control designs with good multivariable loop properties at both the errors (plant outputs) and the controls (plant inputs).
ContributorsMondal, Kaustav (Author) / Rodriguez, Armando Antonio (Thesis advisor) / Tsakalis, Kostas (Committee member) / Si, Jennie (Committee member) / Arizona State University (Publisher)
Created2015