Matching Items (24)
156439-Thumbnail Image.png
Description
There have been a number of studies that have examined students’ difficulties in understanding the idea of logarithm and the effectiveness of non-traditional interventions. However, there have been few studies that have examined the understandings students develop and need to develop when completing conceptually oriented logarithmic lessons. In this document,

There have been a number of studies that have examined students’ difficulties in understanding the idea of logarithm and the effectiveness of non-traditional interventions. However, there have been few studies that have examined the understandings students develop and need to develop when completing conceptually oriented logarithmic lessons. In this document, I present the three papers of my dissertation study. The first paper examines two students’ development of concepts foundational to the idea of logarithm. This paper discusses two essential understandings that were revealed to be problematic and essential for students’ development of productive meanings for exponents, logarithms and logarithmic properties. The findings of this study informed my later work to support students in understanding logarithms, their properties and logarithmic functions. The second paper examines two students’ development of the idea of logarithm. This paper describes the reasoning abilities two students exhibited as they engaged with tasks designed to foster their construction of more productive meanings for the idea of logarithm. The findings of this study provide novel insights for supporting students in understanding the idea of logarithm meaningfully. Finally, the third paper begins with an examination of the historical development of the idea of logarithm. I then leveraged the insights of this literature review and the first two papers to perform a conceptual analysis of what is involved in learning and understanding the idea of logarithm. The literature review and conceptual analysis contributes novel and useful information for curriculum developers, instructors, and other researchers studying student learning of this idea.
ContributorsKuper Flores, Emily Ginamarie (Author) / Carlson, Marilyn (Thesis advisor) / Thompson, Patrick (Committee member) / Milner, Fabio (Committee member) / Zazkis, Dov (Committee member) / Czocher, Jennifer (Committee member) / Arizona State University (Publisher)
Created2018
133901-Thumbnail Image.png
Description
This thesis dives into the world of artificial intelligence by exploring the functionality of a single layer artificial neural network through a simple housing price classification example while simultaneously considering its impact from a data management perspective on both the software and hardware level. To begin this study, the universally

This thesis dives into the world of artificial intelligence by exploring the functionality of a single layer artificial neural network through a simple housing price classification example while simultaneously considering its impact from a data management perspective on both the software and hardware level. To begin this study, the universally accepted model of an artificial neuron is broken down into its key components and then analyzed for functionality by relating back to its biological counterpart. The role of a neuron is then described in the context of a neural network, with equal emphasis placed on how it individually undergoes training and then for an entire network. Using the technique of supervised learning, the neural network is trained with three main factors for housing price classification, including its total number of rooms, bathrooms, and square footage. Once trained with most of the generated data set, it is tested for accuracy by introducing the remainder of the data-set and observing how closely its computed output for each set of inputs compares to the target value. From a programming perspective, the artificial neuron is implemented in C so that it would be more closely tied to the operating system and therefore make the collected profiler data more precise during the program's execution. The program is designed to break down each stage of the neuron's training process into distinct functions. In addition to utilizing more functional code, the struct data type is used as the underlying data structure for this project to not only represent the neuron but for implementing the neuron's training and test data. Once fully trained, the neuron's test results are then graphed to visually depict how well the neuron learned from its sample training set. Finally, the profiler data is analyzed to describe how the program operated from a data management perspective on the software and hardware level.
ContributorsRichards, Nicholas Giovanni (Author) / Miller, Phillip (Thesis director) / Meuth, Ryan (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133194-Thumbnail Image.png
Description
Even in the largest public university in the country, computer related degrees such as Computer Science, Computer Systems Engineering and Software Engineering have low enrollment rates and high dropout rates. This is interesting because the careers that require these degrees are marketed as the highest paying and most powerful. The

Even in the largest public university in the country, computer related degrees such as Computer Science, Computer Systems Engineering and Software Engineering have low enrollment rates and high dropout rates. This is interesting because the careers that require these degrees are marketed as the highest paying and most powerful. The goal of this project was to find out what the students of Arizona State University (ASU) thought about these majors and why they did or did not pick them. A total of 206 students were surveyed from a variety of sources including upper level classes, lower level classes and Barrett, the Honors College. Survey questions asked why the students picked their current major, if they had a previous major and why did they switch, and if the students had considered one of the three computer related degrees. Almost all questions were open ended, meaning the students did not have multiple choice answers and instead could write as short or as long of a response as needed. Responses were grouped based on a set of initial hypotheses and any emerging trends. These groups were displayed in several different bar graphs broken down by gender, grade level and category of student (stayed in a computer related degree, left one, joined one or picked a non-computer related degree). Trends included students of all grade levels picking their major because they were passionate or interested in the subject. This may suggest that college students are set in their path and will not switch majors easily. Students also reported seeing computer related degrees as too difficult and intimidating. However, given the low (when compared to all of ASU) number of students surveyed, the conclusions and trends given cannot be representative of ASU as a whole. Rather, they are just representative of this sample population. Further work on this study, if time permitted, would be to try to survey more students and question some of the trends established to find more specific answers.
ContributorsMeza, Edward L (Author) / Meuth, Ryan (Thesis director) / Miller, Phillip (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
133862-Thumbnail Image.png
Description
Previous research has examined difficulties that students have with understanding and productively working with function notation. Function notation is very prevalent throughout mathematics education, helping students to better understand and more easily work with functions. The goal of my research was to investigate students' current ways of thinking about function

Previous research has examined difficulties that students have with understanding and productively working with function notation. Function notation is very prevalent throughout mathematics education, helping students to better understand and more easily work with functions. The goal of my research was to investigate students' current ways of thinking about function notation to better assist teachers in helping their students develop deeper and more productive understandings. In this study, I conducted two separate interviews with two undergraduate students to explore their meanings for function notation. I developed and adapted tasks aimed at investigating different aspects and uses of function notation. In each interview, I asked the participants to attempt each of the tasks, explaining their thoughts as they worked. While they were working, I occasionally asked clarifying questions to better understand their thought processes. For the second interviews, I added tasks based on difficulties I found in the first interviews. I video recorded each interview for later analysis. Based on the data found in the interviews, I will discuss the seven prevalent ways of thinking that I found, how they hindered or facilitated working with function notation productively, and suggestions for instruction to better help students understand the concept.
ContributorsMckee, Natalie Christina (Author) / Thompson, Patrick (Thesis director) / Zazkis, Dov (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
This research ventures to adjust the Algebra 2 Core Standards set by the Arizona Department of Education so that computer science concepts may be taught in parallel with the mathematical concepts in Algebra 2 in order to facilitate a better understanding of both subjects. The close relation to computer science

This research ventures to adjust the Algebra 2 Core Standards set by the Arizona Department of Education so that computer science concepts may be taught in parallel with the mathematical concepts in Algebra 2 in order to facilitate a better understanding of both subjects. The close relation to computer science and mathematics make this course possible. Students will be more prepared for university level education when they understand how technology works rather than simply how to use it. The solution is to create an online set of modules that can be taught alongside the high school mathematics course, Algebra 2. The solution contains a set of five modules that parallel with the Arizona core standards of the class. There are several obstacles that needed to be overcome in order to create online modules that would fit the needs of schools, students and teachers. This solution will reach students quickly as the hope is that it will become a requirement according to the Arizona Department of Education core standards. The course will be easily accessible to students as it is online and the course will fit into the existing education system, which would not require state laws to be passed in order to require the teaching of computer science. The goal is to bridge the gap between secondary education and college level S.T.E.M. education specifically in reference to computer science so that students start college with a strong understanding of how technology works in order to help them become more successful in the future.
ContributorsHickie, Kendall Shea (Author) / Miller, Phillip (Thesis director) / Meuth, Ryan (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
148295-Thumbnail Image.png
Description

A project about developing software for learning turned into a project for learning about software development. The submission here only includes the journal. However, the journal has a link to the public GitHub repository containing the source code for the thesis. The source code implements a program to facilitate self-study

A project about developing software for learning turned into a project for learning about software development. The submission here only includes the journal. However, the journal has a link to the public GitHub repository containing the source code for the thesis. The source code implements a program to facilitate self-study by allowing the user to create quizzes. The journal contains my experience working on the project (both successes and failures).

ContributorsRoper, Branden Gerald (Author) / Miller, Phillip (Thesis director) / Zazkis, Dov (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147668-Thumbnail Image.png
Description

Arizona State course enrollment regularly reaches triple digits. Despite the large enrollment numbers, the level of communication among students remain relatively low. Students often create Discord servers to keep in touch with classmates, but this requires each individual student to track down the invite link. The purpose of this project

Arizona State course enrollment regularly reaches triple digits. Despite the large enrollment numbers, the level of communication among students remain relatively low. Students often create Discord servers to keep in touch with classmates, but this requires each individual student to track down the invite link. The purpose of this project is to create an inviting chat service for students with minimal barriers of entry. This website, https://gibbl.io, offers a chat room for every class at ASU, making it simple for students to maintain communication.

Created2021-05
Description

This creative project develops an environment in which three species inhabit a shared land and models the movement of the creatures to determine the survival rates over time in specific conditions. The three species modelled include a predator and a prey species with movement capabilities as well as a stagnant

This creative project develops an environment in which three species inhabit a shared land and models the movement of the creatures to determine the survival rates over time in specific conditions. The three species modelled include a predator and a prey species with movement capabilities as well as a stagnant fruit species. There are a variety of configurable variables that can be used to modify and control the simulation to observe how the resulting population charts change. The big difference between this project and a normal approach to simulating a predation relationship is that actual creatures themselves are being created and their movement is simulated in this virtual environment which then leads to population counts, rather than integrating differential equations relating the population sizes of both species and purely tracking the populations but not the creatures themselves. Because of this difference, my simulation is not meant to handle all the complexities of life that come in the real-world but instead is intended as a simplified approach to simulating creatures' lives with the purpose of conveying the idea of a real predation relationship. Thus, the main objective of my simulation is to produce data representative of real-world predator-prey relationships, with the overall cyclical pattern that is observed in natural achieved through simulating creature movement and life itself rather than estimating population size change.

ContributorsPerry, Jordan (Author) / Burger, Kevin (Thesis director) / Miller, Phillip (Committee member) / Barrett, The Honors College (Contributor) / Department of Physics (Contributor) / Computer Science and Engineering Program (Contributor)
Created2023-05
Description

This project seeks to motivate runners by creating an application that selectively plays music based on smartwatch metrics. This is done by analyzing metrics collected through a person’s smartwatch such as heart rate or running power and then selecting the music that best fits their workout’s intensity. This way, as

This project seeks to motivate runners by creating an application that selectively plays music based on smartwatch metrics. This is done by analyzing metrics collected through a person’s smartwatch such as heart rate or running power and then selecting the music that best fits their workout’s intensity. This way, as the workout becomes harder for the user, increasingly motivating music is played.

ContributorsDoyle, Niklas (Author) / Osburn, Steven (Thesis director) / Miller, Phillip (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor) / School of Music, Dance and Theatre (Contributor)
Created2023-05
Description
This project seeks to motivate runners by creating an application that selectively plays music based on smartwatch metrics. This is done by analyzing metrics collected through a person’s smartwatch such as heart rate or running power and then selecting the music that best fits their workout’s intensity. This way, as

This project seeks to motivate runners by creating an application that selectively plays music based on smartwatch metrics. This is done by analyzing metrics collected through a person’s smartwatch such as heart rate or running power and then selecting the music that best fits their workout’s intensity. This way, as the workout becomes harder for the user, increasingly motivating music is played.
ContributorsDoyle, Niklas (Author) / Osburn, Steven (Thesis director) / Miller, Phillip (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor) / School of Music, Dance and Theatre (Contributor)
Created2023-05