Matching Items (20)
161802-Thumbnail Image.png
Description
Rapid increases in the installed amounts of Distributed Energy Resources are forcing a paradigm shift to guarantee stability, security, and economics of power distribution systems. This dissertation explores these challenges and proposes solutions to enable higher penetrations of grid-edge devices. The thesis shows that integrating Graph Signal Processing with State

Rapid increases in the installed amounts of Distributed Energy Resources are forcing a paradigm shift to guarantee stability, security, and economics of power distribution systems. This dissertation explores these challenges and proposes solutions to enable higher penetrations of grid-edge devices. The thesis shows that integrating Graph Signal Processing with State Estimation formulation allows accurate estimation of voltage phasors for radial feeders under low-observability conditions using traditional measurements. Furthermore, the Optimal Power Flow formulation presented in this work can reduce the solution time of a bus injection-based convex relaxation formulation, as shown through numerical results. The enhanced real-time knowledge of the system state is leveraged to develop new approaches to cyber-security of a transactive energy market by introducing a blockchain-based Electron Volt Exchange framework that includes a distributed protocol for pricing and scheduling prosumers' production/consumption while keeping constraints and bids private. The distributed algorithm prevents power theft and false data injection by comparing prosumers' reported power exchanges to models of expected power exchanges using measurements from grid sensors to estimate system state. Necessary hardware security is described and integrated into underlying grid-edge devices to verify the provenance of messages to and from these devices. These preventive measures for securing energy transactions are accompanied by additional mitigation measures to maintain voltage stability in inverter-dominated networks by expressing local control actions through Lyapunov analysis to mitigate cyber-attack and generation intermittency effects. The proposed formulation is applicable as long as the Volt-Var and Volt-Watt curves of the inverters can be represented as Lipschitz constants. Simulation results demonstrate how smart inverters can mitigate voltage oscillations throughout the distribution network. Approaches are rigorously explored and validated using a combination of real distribution networks and synthetic test cases. Finally, to overcome the scarcity of real data to test distribution systems algorithms a framework is introduced to generate synthetic distribution feeders mapped to real geospatial topologies using available OpenStreetMap data. The methods illustrate how to create synthetic feeders across the entire ZIP Code, with minimal input data for any location. These stackable scientific findings conclude with a brief discussion of physical deployment opportunities to accelerate grid modernization efforts.
ContributorsSaha, Shammya Shananda (Author) / Johnson, Nathan (Thesis advisor) / Scaglione, Anna (Thesis advisor) / Arnold, Daniel (Committee member) / Boscovic, Dragan (Committee member) / Arizona State University (Publisher)
Created2021
187540-Thumbnail Image.png
Description
In this dissertation, I implement and demonstrate a distributed coherent mesh beamforming system, for wireless communications, that provides increased range, data rate, and robustness to interference. By using one or multiple distributed, locally-coherent meshes as antenna arrays, I develop an approach that realizes a performance improvement, related to the number

In this dissertation, I implement and demonstrate a distributed coherent mesh beamforming system, for wireless communications, that provides increased range, data rate, and robustness to interference. By using one or multiple distributed, locally-coherent meshes as antenna arrays, I develop an approach that realizes a performance improvement, related to the number of mesh elements, in signal-to-noise ratio over a traditional single-antenna to single-antenna link without interference. I further demonstrate that in the presence of interference, the signal-to-interference-plus-noise ratio improvement is significantly greater for a wide range of environments. I also discuss key performance bounds that drive system design decisions as well as techniques for robust distributed adaptive beamformer construction. I develop and implement an over-the-air distributed time and frequency synchronization algorithm to enable distributed coherence on software-defined radios. Finally, I implement the distributed coherent mesh beamforming system over-the-air on a network of software-defined radios and demonstrate both simulated and experimental results both with and without interference that achieve performance approaching the theoretical bounds.
ContributorsHoltom, Jacob (Author) / Bliss, Daniel W (Thesis advisor) / Alkhateeb, Ahmed (Committee member) / Herschfelt, Andrew (Committee member) / Michelusi, Nicolò (Committee member) / Arizona State University (Publisher)
Created2023
187467-Thumbnail Image.png
Description
A distributed framework is proposed for addressing resource sharing problems in communications, micro-economics, and various other network systems. The approach uses a hierarchical multi-layer decomposition for network utility maximization. This methodology uses central management and distributed computations to allocate resources, and in dynamic environments, it aims to efficiently respond to

A distributed framework is proposed for addressing resource sharing problems in communications, micro-economics, and various other network systems. The approach uses a hierarchical multi-layer decomposition for network utility maximization. This methodology uses central management and distributed computations to allocate resources, and in dynamic environments, it aims to efficiently respond to network changes. The main contributions include a comprehensive description of an exemplary unifying optimization framework to share resources across different operators and platforms, and a detailed analysis of the generalized methods under the assumption that the network changes are on the same time-scale as the convergence time of the algorithms employed for local computations.Assuming strong concavity and smoothness of the objective functions, and under some stability conditions for each layer, convergence rates and optimality bounds are presented. The effectiveness of the framework is demonstrated through numerical examples. Furthermore, a novel Federated Edge Network Utility Maximization (FEdg-NUM) architecture is proposed for solving large-scale distributed network utility maximization problems in a fully decentralized way. In FEdg-NUM, clients with private utilities communicate with a peer-to-peer network of edge servers. Convergence properties are examined both through analysis and numerical simulations, and potential applications are highlighted. Finally, problems in a complex stochastic dynamic environment, specifically motivated by resource sharing during disasters occurring in multiple areas, are studied. In a hierarchical management scenario, a method of applying a primal-dual algorithm in higher-layer along with deep reinforcement learning algorithms in localities is presented. Analytical details as well as case studies such as pandemic and wildfire response are provided.
ContributorsKarakoc, Nurullah (Author) / Scaglione, Anna (Thesis advisor) / Reisslein, Martin (Thesis advisor) / Nedich, Angelia (Committee member) / Michelusi, Nicolò (Committee member) / Arizona State University (Publisher)
Created2023
187375-Thumbnail Image.png
Description
With the rapid development of reflect-arrays and software-defined meta-surfaces, reconfigurable intelligent surfaces (RISs) have been envisioned as promising technologies for next-generation wireless communication and sensing systems. These surfaces comprise massive numbers of nearly-passive elements that interact with the incident signals in a smart way to improve the performance of such

With the rapid development of reflect-arrays and software-defined meta-surfaces, reconfigurable intelligent surfaces (RISs) have been envisioned as promising technologies for next-generation wireless communication and sensing systems. These surfaces comprise massive numbers of nearly-passive elements that interact with the incident signals in a smart way to improve the performance of such systems. In RIS-aided communication systems, designing this smart interaction, however, requires acquiring large-dimensional channel knowledge between the RIS and the transmitter/receiver. Acquiring this knowledge is one of the most crucial challenges in RISs as it is associated with large computational and hardware complexity. For RIS-aided sensing systems, it is interesting to first investigate scene depth perception based on millimeter wave (mmWave) multiple-input multiple-output (MIMO) sensing. While mmWave MIMO sensing systems address some critical limitations suffered by optical sensors, realizing these systems possess several key challenges: communication-constrained sensing framework design, beam codebook design, and scene depth estimation challenges. Given the high spatial resolution provided by the RISs, RIS-aided mmWave sensing systems have the potential to improve the scene depth perception, while imposing some key challenges too. In this dissertation, for RIS-aided communication systems, efficient RIS interaction design solutions are proposed by leveraging tools from compressive sensing and deep learning. The achievable rates of these solutions approach the upper bound, which assumes perfect channel knowledge, with negligible training overhead. For RIS-aided sensing systems, a mmWave MIMO based sensing framework is first developed for building accurate depth maps under the constraints imposed by the communication transceivers. Then, a scene depth estimation framework based on RIS-aided sensing is developed for building high-resolution accurate depth maps. Numerical simulations illustrate the promising performance of the proposed solutions, highlighting their potential for next-generation communication and sensing systems.
ContributorsTaha, Abdelrahman (Author) / Alkhateeb, Ahmed (Thesis advisor) / Bliss, Daniel (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Michelusi, Nicolò (Committee member) / Arizona State University (Publisher)
Created2023
193468-Thumbnail Image.png
Description
This thesis examines the critical relationship between data, complex models, and other methods to measure and analyze them. As models grow larger and more intricate, they require more data, making it vital to use that data effectively. The document starts with a deep dive into nonconvex functions, a fundamental element

This thesis examines the critical relationship between data, complex models, and other methods to measure and analyze them. As models grow larger and more intricate, they require more data, making it vital to use that data effectively. The document starts with a deep dive into nonconvex functions, a fundamental element of modern complex systems, identifying key conditions that ensure these systems can be analyzed efficiently—a crucial consideration in an era of vast amounts of variables. Loss functions, traditionally seen as mere optimization tools, are analyzed and recast as measures of how accurately a model reflects reality. This redefined perspective permits the refinement of data-sourcing strategies for a better data economy. The aim of the investigation is the model itself, which is used to understand and harness the underlying patterns of complex systems. By incorporating structure both implicitly (through periodic patterns) and explicitly (using graphs), the model's ability to make sense of the data is enhanced. Moreover, online learning principles are applied to a crucial practical scenario: robotic resource monitoring. The results established in this thesis, backed by simulations and theoretical proofs, highlight the advantages of online learning methods over traditional ones commonly used in robotics. In sum, this thesis presents an integrated approach to measuring complex systems, providing new insights and methods that push forward the capabilities of machine learning.
ContributorsThaker, Parth Kashyap (Author) / Dasarathy, Gautam (Thesis advisor) / Sankar, Lalitha (Committee member) / Nedich, Angelia (Committee member) / Michelusi, Nicolò (Committee member) / Arizona State University (Publisher)
Created2024
193348-Thumbnail Image.png
Description
With the significant advancements of wireless communication systems that aim to meet exponentially increasing data rate demands, two promising concepts have appeared: (i) Cell-free massive MIMO, which entails the joint transmission and processing of the signals allowing the removal of classical cell boundaries, and (ii) integrated sensing and communication (ISAC),

With the significant advancements of wireless communication systems that aim to meet exponentially increasing data rate demands, two promising concepts have appeared: (i) Cell-free massive MIMO, which entails the joint transmission and processing of the signals allowing the removal of classical cell boundaries, and (ii) integrated sensing and communication (ISAC), unifying communication and sensing in a single framework. This dissertation aims to take steps toward overcoming the key challenges in each concept and eventually merge them for efficient future communication and sensing networks.Cell-free massive MIMO is a distributed MIMO concept that eliminates classical cell boundaries and provides a robust performance. A significant challenge in realizing the cell-free massive MIMO in practice is its deployment complexity. In particular, connecting its many distributed access points with the central processing unit through wired fronthaul is an expensive and time-consuming approach. To eliminate this problem and enhance scalability, in this dissertation, a cell-free massive MIMO architecture adopting a wireless fronthaul is proposed, and the optimization of achievable rates for the end-to-end system is carried out. The evaluation has shown the strong potential of employing wireless fronthaul in cell-free massive MIMO systems. ISAC merges radar and communication systems, allowing effective sharing of resources, including bandwidth and hardware. The ISAC framework also enables sensing to aid communications, which shows a significant potential in mobile communication applications. Specifically, radar sensing data can address challenges like beamforming overhead and blockages associated with higher frequency, large antenna arrays, and narrow beams. To that end, this dissertation develops radar-aided beamforming and blockage prediction approaches using low-cost radar devices and evaluates them in real-world systems to verify their potential. At the intersection of these two paradigms, the integration of sensing into cell-free massive MIMO systems emerges as an intriguing prospect for future technologies. This integration, however, presents the challenge of considering both sensing and communication objectives within a distributed system. With the motivation of overcoming this challenge, this dissertation investigates diverse beamforming and power allocation solutions. Comprehensive evaluations have shown that the incorporation of sensing objectives into joint beamforming designs offers substantial capabilities for next-generation wireless communication and sensing systems.
ContributorsDemirhan, Umut (Author) / Alkhateeb, Ahmed (Thesis advisor) / Dasarathy, Gautam (Committee member) / Trichopoulos, Georgios (Committee member) / Michelusi, Nicolò (Committee member) / Arizona State University (Publisher)
Created2024
191748-Thumbnail Image.png
Description
Millimeter-wave (mmWave) and sub-terahertz (sub-THz) systems aim to utilize the large bandwidth available at these frequencies. This has the potential to enable several future applications that require high data rates, such as autonomous vehicles and digital twins. These systems, however, have several challenges that need to be addressed to realize

Millimeter-wave (mmWave) and sub-terahertz (sub-THz) systems aim to utilize the large bandwidth available at these frequencies. This has the potential to enable several future applications that require high data rates, such as autonomous vehicles and digital twins. These systems, however, have several challenges that need to be addressed to realize their gains in practice. First, they need to deploy large antenna arrays and use narrow beams to guarantee sufficient receive power. Adjusting the narrow beams of the large antenna arrays incurs massive beam training overhead. Second, the sensitivity to blockages is a key challenge for mmWave and THz networks. Since these networks mainly rely on line-of-sight (LOS) links, sudden link blockages highly threaten the reliability of the networks. Further, when the LOS link is blocked, the network typically needs to hand off the user to another LOS basestation, which may incur critical time latency, especially if a search over a large codebook of narrow beams is needed. A promising way to tackle both these challenges lies in leveraging additional side information such as visual, LiDAR, radar, and position data. These sensors provide rich information about the wireless environment, which can be utilized for fast beam and blockage prediction. This dissertation presents a machine-learning framework for sensing-aided beam and blockage prediction. In particular, for beam prediction, this work proposes to utilize visual and positional data to predict the optimal beam indices. For the first time, this work investigates the sensing-aided beam prediction task in a real-world vehicle-to-infrastructure and drone communication scenario. Similarly, for blockage prediction, this dissertation proposes a multi-modal wireless communication solution that utilizes bimodal machine learning to perform proactive blockage prediction and user hand-off. Evaluations on both real-world and synthetic datasets illustrate the promising performance of the proposed solutions and highlight their potential for next-generation communication and sensing systems.
ContributorsCharan, Gouranga (Author) / Alkhateeb, Ahmed (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Turaga, Pavan (Committee member) / Michelusi, Nicolò (Committee member) / Arizona State University (Publisher)
Created2024
157058-Thumbnail Image.png
Description
Synthetic power system test cases offer a wealth of new data for research and development purposes, as well as an avenue through which new kinds of analyses and questions can be examined. This work provides both a methodology for creating and validating synthetic test cases, as well as a few

Synthetic power system test cases offer a wealth of new data for research and development purposes, as well as an avenue through which new kinds of analyses and questions can be examined. This work provides both a methodology for creating and validating synthetic test cases, as well as a few use-cases for how access to synthetic data enables otherwise impossible analysis.

First, the question of how synthetic cases may be generated in an automatic manner, and how synthetic samples should be validated to assess whether they are sufficiently ``real'' is considered. Transmission and distribution levels are treated separately, due to the different nature of the two systems. Distribution systems are constructed by sampling distributions observed in a dataset from the Netherlands. For transmission systems, only first-order statistics, such as generator limits or line ratings are sampled statistically. The task of constructing an optimal power flow case from the sample sets is left to an optimization problem built on top of the optimal power flow formulation.

Secondly, attention is turned to some examples where synthetic models are used to inform analysis and modeling tasks. Co-simulation of transmission and multiple distribution systems is considered, where distribution feeders are allowed to couple transmission substations. Next, a distribution power flow method is parametrized to better account for losses. Numerical values for the parametrization can be statistically supported thanks to the ability to generate thousands of feeders on command.
ContributorsSchweitzer, Eran (Author) / Scaglione, Anna (Thesis advisor) / Hedman, Kory W (Committee member) / Overbye, Thomas J (Committee member) / Monti, Antonello (Committee member) / Sankar, Lalitha (Committee member) / Arizona State University (Publisher)
Created2019
153945-Thumbnail Image.png
Description
Understanding the graphical structure of the electric power system is important

in assessing reliability, robustness, and the risk of failure of operations of this criti-

cal infrastructure network. Statistical graph models of complex networks yield much

insight into the underlying processes that are supported by the network. Such gen-

erative graph models are also

Understanding the graphical structure of the electric power system is important

in assessing reliability, robustness, and the risk of failure of operations of this criti-

cal infrastructure network. Statistical graph models of complex networks yield much

insight into the underlying processes that are supported by the network. Such gen-

erative graph models are also capable of generating synthetic graphs representative

of the real network. This is particularly important since the smaller number of tradi-

tionally available test systems, such as the IEEE systems, have been largely deemed

to be insucient for supporting large-scale simulation studies and commercial-grade

algorithm development. Thus, there is a need for statistical generative models of

electric power network that capture both topological and electrical properties of the

network and are scalable.

Generating synthetic network graphs that capture key topological and electrical

characteristics of real-world electric power systems is important in aiding widespread

and accurate analysis of these systems. Classical statistical models of graphs, such as

small-world networks or Erd}os-Renyi graphs, are unable to generate synthetic graphs

that accurately represent the topology of real electric power networks { networks

characterized by highly dense local connectivity and clustering and sparse long-haul

links.

This thesis presents a parametrized model that captures the above-mentioned

unique topological properties of electric power networks. Specically, a new Cluster-

and-Connect model is introduced to generate synthetic graphs using these parameters.

Using a uniform set of metrics proposed in the literature, the accuracy of the proposed

model is evaluated by comparing the synthetic models generated for specic real

electric network graphs. In addition to topological properties, the electrical properties

are captured via line impedances that have been shown to be modeled reliably by well-studied heavy tailed distributions. The details of the research, results obtained and

conclusions drawn are presented in this document.
ContributorsHu, Jiale (Author) / Sankar, Lalitha (Thesis advisor) / Vittal, Vijay (Committee member) / Scaglione, Anna (Committee member) / Arizona State University (Publisher)
Created2015
154355-Thumbnail Image.png
Description
Two thirds of the U.S. power systems are operated under market structures. A good market design should maximize social welfare and give market participants proper incentives to follow market solutions. Pricing schemes play very important roles in market design.

Locational marginal pricing scheme is the core pricing scheme in energy markets.

Two thirds of the U.S. power systems are operated under market structures. A good market design should maximize social welfare and give market participants proper incentives to follow market solutions. Pricing schemes play very important roles in market design.

Locational marginal pricing scheme is the core pricing scheme in energy markets. Locational marginal prices are good pricing signals for dispatch marginal costs. However, the locational marginal prices alone are not incentive compatible since energy markets are non-convex markets. Locational marginal prices capture dispatch costs but fail to capture commitment costs such as startup cost, no-load cost, and shutdown cost. As a result, uplift payments are paid to generators in markets in order to provide incentives for generators to follow market solutions. The uplift payments distort pricing signals.

In this thesis, pricing schemes in electric energy markets are studied. In the first part, convex hull pricing scheme is studied and the pricing model is extended with network constraints. The subgradient algorithm is applied to solve the pricing model. In the second part, a stochastic dispatchable pricing model is proposed to better address the non-convexity and uncertainty issues in day-ahead energy markets. In the third part, an energy storage arbitrage model with the current locational marginal price scheme is studied. Numerical test cases are studied to show the arguments in this thesis.

The overall market and pricing scheme design is a very complex problem. This thesis gives a thorough overview of pricing schemes in day-ahead energy markets and addressed several key issues in the markets. New pricing schemes are proposed to improve market efficiency.
ContributorsLi, Chao (Author) / Hedman, Kory (Thesis advisor) / Sankar, Lalitha (Committee member) / Scaglione, Anna (Committee member) / Arizona State University (Publisher)
Created2016