Matching Items (1,537)
Filtering by

Clear all filters

135614-Thumbnail Image.png
Description
Accidental wetlands have been created on the bed of the Salt River and are fed by storm-water outfalls discharging at various sections of the Phoenix Metropolitan Area. Water discharges from these outfalls throughout the year, during both dry conditions (base flow) and during rain events (storm flow). In this study,

Accidental wetlands have been created on the bed of the Salt River and are fed by storm-water outfalls discharging at various sections of the Phoenix Metropolitan Area. Water discharges from these outfalls throughout the year, during both dry conditions (base flow) and during rain events (storm flow). In this study, DOC content and composition was studied during these two flow conditions, in the outfalls and along the wetland flow path. The importance of DOC lies in its role in transporting carbon via water movement, between different parts of a landscape, and therefore between pools in the ecosystem. Urbanization has influenced content and composition of DOC entering the accidental urban wetland via outfalls as they represent watersheds from different areas in Phoenix. First, DOC load exhibited higher quantities during stormflow compared to baseflow conditions. Second, DOC load and fluorescence analysis outcomes concluded the outfalls are different from each other. The inputs of water on the north side of the channel represent City of Phoenix watersheds were similar to each other and had high DOC load. The northern outfalls are both different in load and composition from the outfall pipe on the southern bank of the wetland as it represents South Mountain watershed. Fluorescence analysis results also concluded compositional changes occurred along the wetland flow path during both stormflow and baseflow conditions. In this study, it was explored how urbanization and the associated changes in hydrology and geomorphology have affected a desert wetland's carbon content.
ContributorsBone, Stephanie Rosalia (Author) / Hartnett, Hilairy (Thesis director) / Palta, Monica (Committee member) / Mascaro, Giuseppe (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
137737-Thumbnail Image.png
Description
The Great Plains region of the central United States and southern Canada is a promising location for wind energy resource development. Wind energy site assessments and forecasts can benefit from better understanding the variability that may result from several teleconnections affecting North America. This thesis investigates how the El Niño/Southern

The Great Plains region of the central United States and southern Canada is a promising location for wind energy resource development. Wind energy site assessments and forecasts can benefit from better understanding the variability that may result from several teleconnections affecting North America. This thesis investigates how the El Niño/Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), and the Pacific/North American Pattern (PNA) impact mean monthly wind speeds at 850 hPa over the Great Plains. Using wind speeds from the NCAR/NCEP Reanalysis 1, correlations were computed between the mean monthly wind speeds and average monthly teleconnection index values. A difference of means test was used to compute the change in wind speeds between the positive and negative phases of each index. ENSO was not found to have a significant impact on wind speeds, while the NAO and PNA patterns weakly affected wind speeds. The NAO index was positively (negatively) correlated with wind speeds over the northern (southern) plains, while the PNA index was negatively correlated with wind speeds over most of the plains. Even a small change in wind speed can have a large effect on the potential power output, so the effects of these teleconnections should be considered in wind resource assessments and climatologies.
ContributorsOrdonez, Ana Cristina (Author) / Cerveny, Randall (Thesis director) / Svoma, Bohumil (Committee member) / Balling, Robert (Committee member) / Barrett, The Honors College (Contributor) / School of Geographical Sciences and Urban Planning (Contributor)
Created2013-05
131616-Thumbnail Image.png
Description
Agriculture is the second largest water consumer in the Phoenix Metropolitan region, after the municipal sector. A significant portion of the cultivated land and agricultural water demand is from the production of animal feed, including alfalfa (~69% of total cropland area), corn (~8), and sorghum (-3%), which are both exported

Agriculture is the second largest water consumer in the Phoenix Metropolitan region, after the municipal sector. A significant portion of the cultivated land and agricultural water demand is from the production of animal feed, including alfalfa (~69% of total cropland area), corn (~8), and sorghum (-3%), which are both exported and needed to support local dairy industry. The goal of this thesis is to evaluate the impacts on water demand and crop production of four different crop portfolios using alfalfa, corn, sorghum, and feed barley. For this aim, the Water Evaluation And Planning (WEAP) platform and the embedded MABIA agronomic module are applied to the Phoenix Active Management Area (AMA), a political/hydrological region including most of Phoenix Metro. The simulations indicate that the most efficient solution is a portfolio where all study crop production is made up by sorghum, with an increase of 153% in crop yield and a reduction of 60% of water consumption compared to current conditions. In contrast, a portfolio where all study crop production is made up by alfalfa, which is primary crop grown in current conditions, decreased crop yield by 77% and increases water demand by 105%. Solutions where all study crop production is achieved with corn or feed barley lead to a reduction of 77% and 65% of each respective water demand, with a portfolio of all corn for study crop production increasing crop yield by 245% and a portfolio of all feed barley for study crop production reducing crop yield by 29%.
ContributorsRees, Kendall Marcella (Author) / Mascaro, Giuseppe (Thesis director) / Muenich, Rebecca (Committee member) / Chhetri, Netra (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
133023-Thumbnail Image.png
Description
The Mid-South region, which consists of west Tennessee, northeast Arkansas, north Mississippi, and the Missouri bootheel, is one of many areas in the United States that frequently faces the threats to life and property posed by tornadoes. Forecasting the occurrence of tornadoes is arguably the biggest challenge for meteorologists responsible

The Mid-South region, which consists of west Tennessee, northeast Arkansas, north Mississippi, and the Missouri bootheel, is one of many areas in the United States that frequently faces the threats to life and property posed by tornadoes. Forecasting the occurrence of tornadoes is arguably the biggest challenge for meteorologists responsible for the region. This study analyzes synoptic scale weather conditions associated with tornadoes in the Mid-South with the hopes of identifying patterns conducive to tornadic activity and that these patterns can be used to better forecast potential tornado days. It is hypothesized that patterns associated with tornado formation can be identified and that certain patterns may be more favorable to stronger tornadoes or tornado outbreaks than others.
To find these patterns, I analyzed surface and upper air features were analyzed on days where multiple tornadoes occurred from January 1999 to March 2018. Specifically, the surface low pressure, 500hPa trough, and 850 and 300hPa jets were analyzed. Using a floating nine point grid system, I identified the location of the Mid-South in relation to the feature. In the end, eight patterns of similar grid locations were identified to be related to tornado days. For example, the Mid-South was frequently to the southeast of the surface low. However, no correlation appears to exist between the patterns and the number or intensity of tornadoes. It is recommended that in the future these patterns be tested as a forecast method and/or compared to non-tornado days to verify that they are valid tools.
ContributorsWanless, Anna Cecilia (Author) / Cerveny, Randall (Thesis director) / Svoma, Bohumil (Committee member) / School of Geographical Sciences and Urban Planning (Contributor, Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134798-Thumbnail Image.png
Description
There has been much work done predicting the effects of climate change on transportation systems, this research parallels that past work and focuses on the effect of changes in precipitation on roadway drainage systems. On a macro level, this work addresses the process that should be taken to make predictions

There has been much work done predicting the effects of climate change on transportation systems, this research parallels that past work and focuses on the effect of changes in precipitation on roadway drainage systems. On a macro level, this work addresses the process that should be taken to make predictions about the vulnerability of this system due to changes in precipitation. This work also addresses the mechanisms of failure of these drainage systems and how they may be affected by changes in precipitation due to climate change. These changes may entail more frequent failure by certain mechanisms, or a shift in the mechanisms for particular infrastructure. A sample water basin in the urban environment of Phoenix, Arizona is given as a case study. This study looks at the mechanisms of failure of the infrastructure therein, as well as provides a process of analyzing the effects of increases in precipitation to the vulnerability of this infrastructure. It was found that drainage structures at roadways being currently designed will see increases from 20-30% in peak discharge, which will lead to increased frequency of failure.
ContributorsHolt, Nathan Thomas (Author) / Chester, Mikhail V (Thesis director) / Mascaro, Giuseppe (Committee member) / Underwood, Benjamin S. (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
161630-Thumbnail Image.png
Description
There is a considerable need for improved understanding of the outcome and amounts of water used to manage urban landscapes in arid and semiarid cities. Outdoor irrigation in urban parks consists of a large fraction of water demands in Phoenix, Arizona. Hence, ecohydrological processes need to be considered to improve

There is a considerable need for improved understanding of the outcome and amounts of water used to manage urban landscapes in arid and semiarid cities. Outdoor irrigation in urban parks consists of a large fraction of water demands in Phoenix, Arizona. Hence, ecohydrological processes need to be considered to improve outdoor irrigation management. With the goal of reducing outdoor water use and advancing the general knowledge of water fluxes in urban parks, this study explores water conservation opportunities in an arid city through observations and modeling.Most urban parks in Phoenix consist of a mosaic of turfgrass and trees which receive scheduled maintenance, fertilization and watering through sprinkler or flood irrigation. In this study, the effects that different watering practices, turfgrass management and soil conditions have on soil moisture observations in urban parks are evaluated. Soil moisture stations were deployed at three parks with stations at control plots with no compost application and compost treated sites with either a once or twice per year application instead of traditional fertilizer. An eddy covariance system was installed at a park to help quantify water losses and water, energy and carbon fluxes between the turfgrass and atmosphere. Additional meteorological observations are provided through a network of weather stations. The assessment covers over one year of observations, including the period of turfgrass growth in the warm season, and a period of dormancy during the cool season. The observations were used to setup and test a plot-scale soil water balance model to simulate changes in daily soil moisture in response to irrigation, precipitation and evapotranspiration demand for each park. Combining modeling and observations of climate-soil-vegetation processes, I provide guidance on irrigation schedules and management that could help minimize water losses while supporting turfgrass health in desert urban parks. The irrigation scenarios suggest that water savings of at least 18% can be achieved at the three sites. While the application of compost treatment to study plots did not show clear improvements in soil water retention when compared to the control plots, this study shows that water conservation can be promoted while maintaining low plant water stress.
ContributorsKindler, Mercedes (Author) / Vivoni, Enrique R (Thesis advisor) / Mascaro, Giuseppe (Committee member) / Garcia, Margaret (Committee member) / Arizona State University (Publisher)
Created2021
173947-Thumbnail Image.jpg
Created1935