Matching Items (18)
149712-Thumbnail Image.png
Description
Type Ia supernovae are important, but mysterious cosmological tools. Their standard brightnesses have enabled cosmologists to measure extreme distances and to discover dark energy. However, the nature of their progenitor mechanisms remains elusive, with many competing models offering only partial clues to their origins. Here, type Ia supernova delay times

Type Ia supernovae are important, but mysterious cosmological tools. Their standard brightnesses have enabled cosmologists to measure extreme distances and to discover dark energy. However, the nature of their progenitor mechanisms remains elusive, with many competing models offering only partial clues to their origins. Here, type Ia supernova delay times are explored using analytical models. Combined with a new observation technique, this model places new constraints on the characteristic time delay between the formation of stars and the first type Ia supernovae. This derived delay time (500 million years) implies low-mass companions for single degenerate progenitor scenarios. In the latter portions of this dissertation, two progenitor mechanisms are simulated in detail; white dwarf collisions and mergers. From the first of these simulations, it is evident that white dwarf collisions offer a viable and unique pathway to producing type Ia supernovae. Many of the combinations of masses simulated produce sufficient quantities of 56Ni (up to 0.51 solar masses) to masquerade as normal type Ia supernovae. Other combinations of masses produce 56Ni yields that span the entire range of supernova brightnesses, from the very dim and underluminous, with 0.14 solar masses, to the over-bright and superluminous, with up to 1.71 solar masses. The 56Ni yield in the collision simulations depends non-linearly on total system mass, mass ratio, and impact parameter. Using the same numerical tools as in the collisions examination, white dwarf mergers are studied in detail. Nearly all of the simulations produce merger remnants consisting of a cold, degenerate core surrounded by a hot accretion disk. The properties of these disks have strong implications for various viscosity treatments that have attempted to pin down the accretion times. Some mass combinations produce super-Chandrasekhar cores on shorter time scales than viscosity driven accretion. A handful of simulations also exhibit helium detonations on the surface of the primary that bear a resemblance to helium novae. Finally, some of the preliminary groundwork that has been laid for constructing a new numerical tool is discussed. This new tool advances the merger simulations further than any research group has done before, and has the potential to answer some of the lingering questions that the merger study has uncovered. The results of thermal diffusion tests using this tool have a remarkable correspondence to analytical predictions.
ContributorsRaskin, Cody (Author) / Scannapieco, Evan (Thesis advisor) / Rhoads, James (Committee member) / Young, Patrick (Committee member) / Mcnamara, Allen (Committee member) / Timmes, Francis (Committee member) / Arizona State University (Publisher)
Created2011
150487-Thumbnail Image.png
Description
This research investigates Earth structure in the core-mantle boundary (CMB) region, where the solid rocky mantle meets the molten iron alloy core. At long wavelengths, the lower mantle is characterized by two nearly antipodal large low shear velocity provinces (LLSVPs), one beneath the Pacific Ocean the other beneath Africa and

This research investigates Earth structure in the core-mantle boundary (CMB) region, where the solid rocky mantle meets the molten iron alloy core. At long wavelengths, the lower mantle is characterized by two nearly antipodal large low shear velocity provinces (LLSVPs), one beneath the Pacific Ocean the other beneath Africa and the southern Atlantic Ocean. However, fine-scale LLSVP structure as well as its relationship with plate tectonics, mantle convection, hotspot volcanism, and Earth's outer core remains poorly understood. The recent dramatic increase in seismic data coverage due to the EarthScope experiment presents an unprecedented opportunity to utilize large concentrated datasets of seismic data to improve resolution of lowermost mantle structures. I developed an algorithm that identifies anomalously broadened seismic waveforms to locate sharp contrasts in shear velocity properties across the margins of the LLSVP beneath the Pacific. The result suggests that a nearly vertical mantle plume underlies Hawaii that originates from a peak of a chemically distinct reservoir at the base of the mantle, some 600-900 km above the CMB. Additionally, acute horizontal Vs variations across and within the northern margin of the LLSVP beneath the central Pacific Ocean are inferred from forward modeling of differential travel times between S (and Sdiff) and SKS, and also between ScS and S. I developed a new approach to expand the geographic detection of ultra-low velocity zones (ULVZs) with a new ScS stacking approach that simultaneously utilizes the pre- and post-cursor wavefield.. Strong lateral variations in ULVZ thicknesses and properties are found across the LLSVP margins, where ULVZs are thicker and stronger within the LLSVP than outside of it, consistent with convection model predictions. Differential travel times, amplitude ratios, and waveshapes of core waves SKKS and SKS are used to investigate CMB topography and outermost core velocity structure. 1D and 2D wavefield simulations suggest that the complicated geographic distribution of observed SKKS waveform anomalies might be a result of CMB topography and a higher velocity outermost core. These combined analyses depict a lowermost mantle that is rich in fine-scale structural complexity, which advances our understanding of its integral role in mantle circulation, mixing, and evolution.
ContributorsZhao, Chunpeng (Author) / Garnero, Edward J (Thesis advisor) / Mcnamara, Allen (Committee member) / Tyburczy, James (Committee member) / Fouch, Matthew (Committee member) / Sharp, Thomas (Committee member) / Arizona State University (Publisher)
Created2012
150470-Thumbnail Image.png
Description
Stratification is a dominant feature of all planetary interiors. Fine-scale structure associated with layering, as well as heterogeneities hold important clues on a planet's compositional, thermal, and dynamical state, as well as its evolution. This research centers on using data from seismic arrays, networks of seismic sensors, and array processing

Stratification is a dominant feature of all planetary interiors. Fine-scale structure associated with layering, as well as heterogeneities hold important clues on a planet's compositional, thermal, and dynamical state, as well as its evolution. This research centers on using data from seismic arrays, networks of seismic sensors, and array processing methodologies to map the fine scale structure in the Earth's upper mantle and deep layering in the Moon - Earth and Moon are the only two planetary bodies with seismic available data for such analyses. Small-scale structure in the Earth's upper mantle can give rise to seismic wave scattering. I studied high frequency data from the Warramunga Array in Australia using array seismology. I developed and employed back-projection schemes to map the possible upper mantle scattering or reflection locations. Mapped scatterers show good correlation to strong lateral P-wave velocity gradients in tomography models and may be associated with the complex tectonic history beneath north of Australia. The minimum scale of scatterers relates to the seismic wavelength, which is roughly between 5 and 10 km in the upper mantle for the frequencies we study. The Apollo Passive Seismic Experiment (APSE) consisted of four 3-component seismometers deployed between 1969 and 1972 that continuously recorded lunar ground motion until late 1977. I studied the deep lunar interior with array methods applied to the legacy APSE dataset. The stack results suggest the presence of a solid inner and fluid outer core, overlain by a partially molten boundary layer, but their reflector impedance contrasts and reflector depths are not well constrained. With a rapidly increasing number of available modern broadband data, I developed a package, Discovery Using Ducttape Excessively (DUDE), to quickly generate plots for a comprehensive view of earthquake data. These plots facilitate discovery of unexpected phenomena. This dissertation identifies evidence for small-scale heterogeneities in Earth's upper mantle, and deeper lunar layering structure. Planetary interiors are complex with the heterogeneities on many scales, and discontinuities of variable character. This research demonstrates that seismic array methods are well-suited for interrogating heterogeneous phenomena, especially considering the recent rapid expansion of easily available dense network data.
ContributorsLin, Pei-Ying (Author) / Garnero, Edward J. (Thesis advisor) / Fouch, Matthew (Committee member) / Mcnamara, Allen (Committee member) / Sharp, Thomas (Committee member) / Tyburczy, James (Committee member) / Arizona State University (Publisher)
Created2011
171746-Thumbnail Image.png
Description
Subsolidus convection in the mantle of Earth is the driving mechanism behind plate tectonics and provides a central framework linking geophysical, geochemical, petrological, hydrological, and biological processes within the system. Seismic observations have revealed mantle heterogeneities in wide-ranging scales from less than tens of to thousands of kilometers. Understanding the

Subsolidus convection in the mantle of Earth is the driving mechanism behind plate tectonics and provides a central framework linking geophysical, geochemical, petrological, hydrological, and biological processes within the system. Seismic observations have revealed mantle heterogeneities in wide-ranging scales from less than tens of to thousands of kilometers. Understanding the origins and dynamics of these anomalies is critical to advance our knowledge on how mantle convection operates and coevolves with the surface system. This dissertation attempts to constrain the past, present and future of mantle dynamics with lines of evidence from seismology, geodynamics, petrology, geochemistry, and astrophysics. Above Earth’s core, two continent-sized large low shear velocity provinces (LLSVPs) beneath Africa and the Pacific Ocean were seismically detected decades ago. Yet their origin, composition, detailed morphology and influence over mantle convection remain elusive. First, I propose the two LLSVPs may represent the mantle remnants of the Moon-forming impactor Theia. I show that the mantle of Theia is intrinsically denser than Earth’s mantle and would have sunk and accumulated into LLSVP-like structures in the deepest mantle after 4.5 billion years. Second, I examined the maximum height of the two LLSVPs and determined that the African LLSVP is ~1,000 km higher than the Pacific counterpart. Using geodynamic simulations, I find the height of a stable LLSVP is mainly controlled by its density and the ambient mantle viscosity. With ~1,000 numerical experiments, I conclude that the origin of the great height difference between the LLSVPs is that the African LLSVP is less dense, and thus less stable than the Pacific LLSVP. Next, I numerically identified another dynamic scenario accounting for the vastly different height of the two LLSVPs, which is caused by catastrophic sinking of accumulated subducted slabs at the 660-km boundary. Last, targeting one ancient carbonatite above the African LLSVP, I show that lithium isotopes in humite measured by nanoscale secondary ion mass spectrometry was able to uncover the signature of a subducted oceanic crust in its magma source, which may return from the interior to the surface by mantle plumes.
ContributorsYuan, Qian (Author) / Li, Mingming (Thesis advisor) / Garnero, Edward (Committee member) / Shim, Sang-Heon (Committee member) / Hervig, Richard (Committee member) / Bose, Maitrayee (Committee member) / Arizona State University (Publisher)
Created2022
171935-Thumbnail Image.png
Description
Hydrogen is the main constituent of stars, and thus dominates the protoplanetary disc from which planets are born. Many planets may at some point in their growth have a high-pressure interface between refractory planetary materials and ahydrogen-dominated atmosphere. However, little experimental data for these materials at the relevant pressure-temperature conditions

Hydrogen is the main constituent of stars, and thus dominates the protoplanetary disc from which planets are born. Many planets may at some point in their growth have a high-pressure interface between refractory planetary materials and ahydrogen-dominated atmosphere. However, little experimental data for these materials at the relevant pressure-temperature conditions exists. I have experimentally explored the interactions between planetary materials and hydrogen at high P-T conditions utilizing the pulsed laser-heated diamond-anvil cell. First, I found that ferric/ferrous iron (as Fe2O3 hematite and (Mg,Fe)O ferropericlase) are reduced to metal by hydrogen: Fe2O3 + 4H2 → 2FeO + H2O + 3H2 → 2FeH + 3H2O and (Mg1−xFex) O + 3/2 xH2 → xFeH + (1 − x) MgO + xH2O respectively. This reduction of iron by hydrogen is important because it produces iron metal and water from iron oxide. This can partition H into the core (as FeH) or mantle (as H2O/OH−) of a growing planet. Next, I expanded my starting materials to silicates. I conducted experiments on San Carlos Olivine at pressures of 5-42 GPa. In the presence hydrogen, I observed the breakdown of molten magnesium silicate and the reduction of both iron and silicon to metal, forming alloys of both Fe-H and Fe-Si: Mg2SiO4 + 2H2 + 3Fe → 2MgO + FeSi + 2FeH + 2H2O. Similar experiments using natural fayalite (Fe2SiO4) as a starting material at pressures of 5-21 GPa yielded similar results. Hydrogen reduced iron to metal as it did in experiments with iron oxides. Unlike with San Carlos olivine, above 10 GPa silicon remained oxidized, implying the following reaction: Fe2SiO4 + 3H2 → 2FeH+2H2O +SiO2. However, below 7 GPa, silicon reduces and alloys with iron. The formation of Fe-Si alloys from silicates facilitated by hydrogen could have important effects for core composition in growing planets. I also observed at low pressures (<10 GPa), quenched iron melt can trap more hydrogen than previously thought (H/Fe nearly 2 instead of 1). This may have important effects for the chemical sequestration of a hydrogen atmosphere at shallow depths in an early magma ocean. All of the experimental work presented herein show that the composition, chemical partitioning, and phase stability of the condensed portion of growing planets can be modified via interaction with overlaying or ingassed volatile species.
ContributorsAllen-Sutter, Harrison (Author) / Shim, Sang-Heon Dan (Thesis advisor) / Li, Mingming (Committee member) / Leinenweber, Kurt D (Committee member) / Tyburczy, James A (Committee member) / Gabriel, Travis S.J. (Committee member) / Arizona State University (Publisher)
Created2022
189239-Thumbnail Image.png
Description
White Dwarf stars are the stellar remnants of low mass stars which have completed their evolution. Nearly all stars will become white dwarfs. The interior of a white dwarf encapsulates its evolution history: unraveling a white dwarf’s internal structure constrains the physical events which occurred to construct its composition. Variable,

White Dwarf stars are the stellar remnants of low mass stars which have completed their evolution. Nearly all stars will become white dwarfs. The interior of a white dwarf encapsulates its evolution history: unraveling a white dwarf’s internal structure constrains the physical events which occurred to construct its composition. Variable, or pulsating, white dwarfs emit pulsations which are sensitive to their internal stratification. Just as seismology reveals Earth’s interior, asteroseismology can reveal stellar interiors. The standard approach to construe an observed white dwarf’s chemical makeup is to match observed pulsation properties to theoretical stellar models. Observed white dwarf pulsation data has reached 6-7 significant digits of precision. As such, it is important for computational modeling to consider systematic offsets from initial conditions and theoretical uncertainties that are within the detectable threshold. By analyzing the magnitude of pulsation differences among various uncertainties from white dwarf models, one can place constraints on important theoretical uncertainties. In this thesis, I explore impacts on white dwarf pulsations that result from accounting for various uncertainties in computational models. I start by showing the importance of 22Ne, and its impact on the pulsations in Helium atmosphere white dwarfs. Next, I discuss how certain trapped modes of white dwarfs may yield a signal for the 12C(α,γ)16O reaction rate probability distribution function. This reaction occurs during the Helium core burning phase in stellar evolution, and chiefly determines the Carbon and Oxygen abundance of white dwarfs. Following this work, I show how overshooting impacts the pulsation signatures of the 12C(α, γ)16O reaction rate. I then touch on the analytical work I’ve done regarding educational research in the HabWorlds course offered at Arizona State University (ASU). I then summarize my conclusions from these efforts.
ContributorsChidester, Morgan Taylor (Author) / Timmes, Francis X (Thesis advisor) / Young, Patrick (Committee member) / Li, Mingming (Committee member) / Borthakur, Sanchayeeta (Committee member) / Line, Michael (Committee member) / Arizona State University (Publisher)
Created2023
156778-Thumbnail Image.png
Description
The dynamic Earth involves feedbacks between the solid crust and both natural and anthropogenic fluid flows. Fluid-rock interactions drive many Earth phenomena, including volcanic unrest, seismic activities, and hydrological responses. Mitigating the hazards associated with these activities requires fundamental understanding of the underlying physical processes. Therefore, geophysical monitoring in combination

The dynamic Earth involves feedbacks between the solid crust and both natural and anthropogenic fluid flows. Fluid-rock interactions drive many Earth phenomena, including volcanic unrest, seismic activities, and hydrological responses. Mitigating the hazards associated with these activities requires fundamental understanding of the underlying physical processes. Therefore, geophysical monitoring in combination with modeling provides valuable tools, suitable for hazard mitigation and risk management efforts. Magmatic activities and induced seismicity linked to fluid injection are two natural and anthropogenic processes discussed in this dissertation.

Successful forecasting of the timing, style, and intensity of a volcanic eruption is made possible by improved understanding of the volcano life cycle as well as building quantitative models incorporating the processes that govern rock melting, melt ascending, magma storage, eruption initiation, and interaction between magma and surrounding host rocks at different spatial extent and time scale. One key part of such models is the shallow magma chamber, which is generally directly linked to volcano’s eruptive behaviors. However, its actual shape, size, and temporal evolution are often not entirely known. To address this issue, I use space-based geodetic data with high spatiotemporal resolution to measure surface deformation at Kilauea volcano. The obtained maps of InSAR (Interferometric Synthetic Aperture Radar) deformation time series are exploited with two novel modeling schemes to investigate Kilauea’s shallow magmatic system. Both models can explain the same observation, leading to a new compartment model of magma chamber. Such models significantly advance the understanding of the physical processes associated with Kilauea’s summit plumbing system with potential applications for volcanoes around the world.

The unprecedented increase in the number of earthquakes in the Central and Eastern United States since 2008 is attributed to massive deep subsurface injection of saltwater. The elevated chance of moderate-large damaging earthquakes stemming from increased seismicity rate causes broad societal concerns among industry, regulators, and the public. Thus, quantifying the time-dependent seismic hazard associated with the fluid injection is of great importance. To this end, I investigate the large-scale seismic, hydrogeologic, and injection data in northern Texas for period of 2007-2015 and in northern-central Oklahoma for period of 1995-2017. An effective induced earthquake forecasting model is developed, considering a complex relationship between injection operations and consequent seismicity. I find that the timing and magnitude of regional induced earthquakes are fully controlled by the process of fluid diffusion in a poroelastic medium and thus can be successfully forecasted. The obtained time-dependent seismic hazard model is spatiotemporally heterogeneous and decreasing injection rates does not immediately reduce the probability of an earthquake. The presented framework can be used for operational induced earthquake forecasting. Information about the associated fundamental processes, inducing conditions, and probabilistic seismic hazards has broad benefits to the society.
ContributorsZhai, Guang (Author) / Shirzaei, Manoochehr (Thesis advisor) / Garnero, Edward (Committee member) / Clarke, Amanda (Committee member) / Tyburczy, James (Committee member) / Li, Mingming (Committee member) / Arizona State University (Publisher)
Created2018
157625-Thumbnail Image.png
Description
This research investigates the fine scale structure in Earth's mantle, especially for the lowermost mantle, where strong heterogeneity exists. Recent seismic tomography models have resolved large-scale features in the lower mantle, such as the large low shear velocity provinces (LLSVPs). However, differences are present between different models, especially at shorter

This research investigates the fine scale structure in Earth's mantle, especially for the lowermost mantle, where strong heterogeneity exists. Recent seismic tomography models have resolved large-scale features in the lower mantle, such as the large low shear velocity provinces (LLSVPs). However, differences are present between different models, especially at shorter length scales. Fine scale structures both within and outside LLSVPs are still poorly constrained. The drastic growth of global seismic networks presents densely sampled seismic data in unprecedented quality and quantity. In this work, the Empirical Wavelet construction method has been developed to document seismic travel time and waveform information for a global shear wave seismic dataset. A dataset of 250K high-quality seismic records with comprehensive measurements is documented and made publicly available. To more accurately classify high quality seismic signal from the noise, 1.4 million manually labeled seismic records have been used to train a supervised classification model. The constructed model performed better than the empirical model deployed in the Empirical Wavelet method, with 87% in precision and 83% in recall. To utilize lower amplitude phases such as higher multiples of S and ScS waves, we have developed a geographic bin stacking method to improve signal-to-noise ratio. It is then applied to Sn waves up to n=6 and ScSn wave up to n=5 for both minor and major arc phases. The virtual stations constructed provide unique path sampling and coverage, vastly improving sampling in the Southern Hemisphere. With the high-quality dataset we have gathered, ray-based layer stripping iterative forward tomography is implemented to update a starting tomography model by mapping the travel time residuals along the ray from the surface down to the core mantle boundary. Final updated models with different starting tomography models show consistent updates, suggesting a convergent solution. The final updated models show higher resolution results than the starting tomography models, especially on intermediate-scale structures. The combined analyses and results in this work provide new tools and new datasets to image the fine-scale heterogeneous structures in the lower mantle, which advances our understanding of the dynamics and evolution of the Earth's mantle.
ContributorsLai, Hongyu (Author) / Garnero, Edward J (Thesis advisor) / Till, Christy B. (Committee member) / Shim, Sang-Heon (Committee member) / Li, Mingming (Committee member) / Tyburczy, James (Committee member) / Arizona State University (Publisher)
Created2019
156961-Thumbnail Image.png
Description
The pace of exoplanet discoveries has rapidly accelerated in the past few decades and the number of planets with measured mass and radius is expected to pick up in the coming years. Many more planets with a size similar to earth are expected to be found. Currently, software for characterizing

The pace of exoplanet discoveries has rapidly accelerated in the past few decades and the number of planets with measured mass and radius is expected to pick up in the coming years. Many more planets with a size similar to earth are expected to be found. Currently, software for characterizing rocky planet interiors is lacking. There is no doubt that a planet’s interior plays a key role in determining surface conditions including atmosphere composition and land area. Comparing data with diagrams of mass vs. radius for terrestrial planets provides only a first-order estimate of the internal structure and composition of planets [e.g. Seager et al 2007]. This thesis will present a new Python library, ExoPlex, which has routines to create a forward model of rocky exoplanets between 0.1 and 5 Earth masses. The ExoPlex code offers users the ability to model planets of arbitrary composition of Fe-Si-Mg-Al-Ca-O in addition to a water layer. This is achieved by modeling rocky planets after the earth and other known terrestrial planets. The three distinct layers which make up the Earth's internal structure are: core, mantle, and water. Terrestrial planet cores will be dominated by iron however, like earth, there may be some quantity of light element inclusion which can serve to enhance expected core volumes. In ExoPlex, these light element inclusions are S-Si-O and are included as iron-alloys. Mantles will have a more diverse mineralogy than planet cores. Unlike most other rocky planet models, ExoPlex remains unbiased in its treatment of the mantle in terms of composition. Si-Mg-Al-Ca oxide components are combined by predicting the mantle mineralogy using a Gibbs free energy minimization software package called Perple\_X [Connolly 2009]. By allowing an arbitrary composition, ExoPlex can uniquely model planets using their host star’s composition as an indicator of planet composition. This is a proven technique [Dorn et al 2015] which has not yet been widely utilized, possibly due to the lack of availability of easy to use software. I present a model sensitivity analysis to indicate the most important parameters to constrain in future observing missions. ExoPlex is currently available on PyPI so it may be installed using pip or conda on Mac OS or Linux based operating systems. It requires a specific scripting environment which is explained in the documentation currently stored on the ExoPlex GitHub page.
ContributorsLorenzo, Alejandro M., Jr (Author) / Desch, Steven (Thesis advisor) / Shim, Dan S.-H. (Committee member) / Line, Michael (Committee member) / Li, Mingming (Committee member) / Arizona State University (Publisher)
Created2018
154978-Thumbnail Image.png
Description
Silicic volcanoes produce many styles of activity over a range of timescales. Eruptions vary from slow effusion of viscous lava over many years to violent explosions lasting several hours. Hazards from these eruptions can be far-reaching and persistent, and are compounded by the dense populations often surrounding active volcanoes. I

Silicic volcanoes produce many styles of activity over a range of timescales. Eruptions vary from slow effusion of viscous lava over many years to violent explosions lasting several hours. Hazards from these eruptions can be far-reaching and persistent, and are compounded by the dense populations often surrounding active volcanoes. I apply and develop satellite and ground-based remote sensing techniques to document eruptions at Merapi and Sinabung Volcanoes in Indonesia. I use numerical models of volcanic activity in combination with my observational data to describe the processes driving different eruption styles, including lava dome growth and collapse, lava flow emplacement, and transitions between effusive and explosive activity.

Both effusive and explosive eruptions have occurred recently at Merapi volcano. I use satellite thermal images to identify variations during the 2006 effusive eruption and a numerical model of magma ascent to explain the mechanisms that controlled those variations. I show that a nearby tectonic earthquake may have triggered the peak phase of the eruption by increasing the overpressure and bubble content of the magma and that the frequency of pyroclastic flows is correlated with eruption rate. In 2010, Merapi erupted explosively but also shifted between rapid dome-building and explosive phases. I explain these variations by the heterogeneous addition of CO2 to the melt from bedrock under conditions favorable to transitions between effusive and explosive styles.

At Sinabung, I use photogrammetry and satellite images to describe the emplacement of a viscous lava flow. I calculate the flow volume (0.1 km3) and average effusion rate (4.4 m3 s-1) and identify active regions of collapse and advance. Advance rate was controlled by the effusion rate and the flow’s yield strength. Pyroclastic flow activity was initially correlated to the decreasing flow advance rate, but was later affected by the underlying topography as the flow inflated and collapsed near the vent, leading to renewed pyroclastic flow activity.

This work describes previously poorly understood mechanisms of silicic lava emplacement, including multiple causes of pyroclastic flows, and improves the understanding, monitoring capability, and hazard assessment of silicic volcanic eruptions.
ContributorsCarr, Brett B (Author) / Clarke, Amanda B (Thesis advisor) / Arrowsmith, Ramon (Committee member) / Mcnamara, Allen (Committee member) / Shirzaei, Manoochehr (Committee member) / Williams, Stanley (Committee member) / Arizona State University (Publisher)
Created2016