Matching Items (2)
133689-Thumbnail Image.png
Description
With the influence of the Western Diet, obesity has become a rising problem in the country today. Western Diet is characterized by the overconsumption of processed food that is low in nutritional values and high in saturated fats. Study showed that every two out of three adults in the United

With the influence of the Western Diet, obesity has become a rising problem in the country today. Western Diet is characterized by the overconsumption of processed food that is low in nutritional values and high in saturated fats. Study showed that every two out of three adults in the United States are either overweight or obese. Being obese increase the risk of many other disease such as diabetes, cardiovascular disease and insulin resistance. Besides being a great health concern, obesity is also cause a great financial burden. Many efforts have been made to understand the defense against obesity and weight loss. The goal of this study was to understand the characterization of food intake and weight gain responses when imposed on a high-fat diet (HFD) using rats. It was predicted that weight gain would be dependent on energy intake and it would have a significant effect on adiposity compared to energy intake. Data showed that energy intake had high significance with adiposity whereas weight gain showed no significance. Also for the rats that were on HFD, the obesity-prone (OP) rats exhibited a great amount of weight gain and energy intake while the obesity-resistance (OR) rats showed a similar weight gain to the controlled group on low-fat diet (LFD) despite being hyperphagic. This suggests that OR is characterized by equal weight gain despite hyperphagia but this alone cannot explain the boy defense against obesity. More research is needed with a larger sample size to understand weight gain responses in order to fight against the epidemic of obesity.
ContributorsMao, Samuel (Author) / Herman, Richard (Thesis director) / Baluch, Page (Committee member) / Lamb, Timothy (Committee member) / WPC Graduate Programs (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
152366-Thumbnail Image.png
Description
Water-soluble, adenosine triphosphate (ATP)-stabilized palladium nanoparticles have been synthesized by reduction of palladium salt in the presence of excess ATP. They have been characterized by electron microscopy, energy dispersive X-ray spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, and X-ray diffraction in order to determine particle size, shape, composition and crystal structure. The particles

Water-soluble, adenosine triphosphate (ATP)-stabilized palladium nanoparticles have been synthesized by reduction of palladium salt in the presence of excess ATP. They have been characterized by electron microscopy, energy dispersive X-ray spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, and X-ray diffraction in order to determine particle size, shape, composition and crystal structure. The particles were then subsequently attached to a glassy carbon electrode (GCE) in order to explore their electrochemical properties with regard to hydrogen insertion in 1 M sodium hydroxide. The particles were found to be in the size range 2.5 to 4 nm with good size dispersion. The ATP capping ligand allowed the particles to be air-stable and re-dissolved without agglomeration. It was found that the NPs could be firmly attached to the working electrode via cycling the voltage repeatedly in a NP/phosphate solution. Further electrochemical experiments were conducted to investigate the adsorption and absorption of hydrogen in the NPs in 1 M sodium hydroxide. Results for cyclic voltammetry experiments were consistent with those for nanostructured and thin-film palladium in basic solution. Absorbed hydrogen content was analyzed as a function of potential. The maximum hydrogen:Pd ratio was found to be ~0.7, close the theoretical maximum value for β phase palladium hydride.
ContributorsLamb, Timothy (Author) / Buttry, Daniel A (Thesis advisor) / Yarger, Jeffery (Committee member) / Ros, Alexandra (Committee member) / Arizona State University (Publisher)
Created2013