Matching Items (15)
151042-Thumbnail Image.png
Description
Climate and land use change are projected to threaten biodiversity over the coming century. However, the combined effects of these threats on biodiversity and the capacity of current conservation networks to protect species' habitat are not well understood. The goals of this study were to evaluate the effect of climate

Climate and land use change are projected to threaten biodiversity over the coming century. However, the combined effects of these threats on biodiversity and the capacity of current conservation networks to protect species' habitat are not well understood. The goals of this study were to evaluate the effect of climate change and urban development on vegetation distribution in a Mediterranean-type ecosystem; to identify the primary source of uncertainty in suitable habitat predictions; and to evaluate how well conservation areas protect future habitat in the Southwest ecoregion of the California Floristic Province. I used a consensus-based modeling approach combining three different species distribution models to predict current and future suitable habitat for 19 plant species representing different plant functional types (PFT) defined by fire-response (obligate seeders, resprouting shrubs), and life forms (herbs, subshurbs). I also examined the response of species grouped by range sizes (large, small). I used two climate models, two emission scenarios, two thresholds, and high-resolution (90m resolution) environmental data to create a range of potential scenarios. I evaluated the effectiveness of an existing conservation network to protect suitable habitat for rare species in light of climate and land use change. The results indicate that the area of suitable habitat for each species varied depending on the climate model, emission scenario, and threshold combination. The suitable habitat for up to four species could disappear from the ecoregion, while suitable habitat for up to 15 other species could decrease under climate change conditions. The centroid of the species' suitable environmental conditions could shift up to 440 km. Large net gains in suitable habitat were predicted for a few species. The suitable habitat area for herbs has a small response to climate change, while obligate seeders could be the most affected PFT. The results indicate that the other two PFTs gain a considerable amount of suitable habitat area. Several rare species could lose suitable habitat area inside designated conservation areas while gaining suitable habitat area outside. Climate change is predicted to be more important than urban development as a driver of habitat loss for vegetation in this region in the coming century. These results indicate that regional analyses of this type are useful and necessary to understand the dynamics of drivers of change at the regional scale and to inform decision making at this scale.
ContributorsBeltrán Villarreal, Bray de Jesús (Author) / Franklin, Janet (Thesis advisor) / Fenichel, Eli P (Committee member) / Kinzig, Ann P (Committee member) / Collins, James P. (Committee member) / Arizona State University (Publisher)
Created2012
151094-Thumbnail Image.png
Description
Environmental agencies often want to accomplish additional objectives beyond their central environmental protection objective. This is laudable; however it begets a need for understanding the additional challenges and trade-offs involved in doing so. The goal of this thesis is to examine the trade-offs involved in two such cases that have

Environmental agencies often want to accomplish additional objectives beyond their central environmental protection objective. This is laudable; however it begets a need for understanding the additional challenges and trade-offs involved in doing so. The goal of this thesis is to examine the trade-offs involved in two such cases that have received considerable attention recently. The two cases I examine are (1) the protection of multiple environmental goods (e.g., bundles of ecosystem services); and (2) the use of payments for ecosystem services as a poverty reduction mechanism. In the first case (chapter 2), I build a model based on the fact that efforts to protect one environmental good often increase or decrease the levels of other environmental goods, what I refer to as "cobenefits" and "disbenefits" respectively. There is often a desire to increase the cobenefits of environmental protection efforts in order to synergize across conservation efforts; and there is also a desire to decrease disbenefits because they are seen as negative externalities of protection efforts. I show that as a result of reciprocal externalities between environmental protection efforts, environmental agencies likely have a disincentive to create cobenefits, but may actually have an incentive to decrease disbenefits. In the second case (chapter 3), I model an environmental agency that wants to increase environmental protection, but would also like to reduce poverty. The model indicates that in theory, the trade-offs between these two goals may depend on relevant parameters of the system, particularly the ratio of the price of monitoring to participant's compliance cost. I show that when the ratio of monitoring costs to compliance cost is higher, trade-offs between environmental protection and poverty reduction are likely to be smaller. And when the ratio of monitoring costs to compliance costs is lower, trade-offs are likely to be larger. This thesis contributes to a deeper understanding of the trade-offs faced by environmental agencies that want to pursue secondary objectives of protecting additional environmental goods or reducing poverty.
ContributorsGilliland, Ted (Author) / Perrings, Charles (Thesis advisor) / Abbott, Josh K (Committee member) / Kinzig, Ann P (Committee member) / Arizona State University (Publisher)
Created2012
149520-Thumbnail Image.png
Description

General ecological thought pertaining to plant biology, conservation, and urban areas has rested on two potentially contradictory underlying assumptions. The first is that non-native plants can spread easily from human developments to “pristine” areas. The second is that native plants cannot disperse through developed areas. Both assume anthropogenic changes to

General ecological thought pertaining to plant biology, conservation, and urban areas has rested on two potentially contradictory underlying assumptions. The first is that non-native plants can spread easily from human developments to “pristine” areas. The second is that native plants cannot disperse through developed areas. Both assume anthropogenic changes to ecosystems create conditions that favor non-native plants and hinder native species. However, it is just as likely that anthropogenic alterations of habitats will favor certain groups of plant species with similar functional traits, whether native or not. Migration of plants can be divided into the following stages: dispersal, germination, establishment, reproduction and spread. Functional traits of species determine which are most successful at each of the stages of invasion or range enlargement. I studied the traits that allow both native and non-native plant species to disperse into freeway corridors, germinate, establish, reproduce, and then disperse along those corridors in Phoenix, Arizona. Field methods included seed bank sample collection and germination, vegetation surveys, and seed trapping. I also evaluated concentrations of plant-available nitrate as a result of localized nitrogen deposition. While many plant species found on the roadsides are either landscape varieties or typical weedy species, some uncommon native species and unexpected non-native species were also encountered. Maintenance regimes greatly influence the amount of vegetative cover and species composition along roadsides. Understanding which traits permit success at various stages of the invasion process indicates whether it is native, non-native, or species with particular traits that are likely to move through the city and establish in the desert. In a related case study conducted in Victoria, Australia, transportation professionals and ecologists were surveyed regarding preferences for roadside landscape design. Roadside design and maintenance projects are typically influenced by different groups of transportation professionals at various stages in a linear project cycle. Landscape architects and design professionals have distinct preferences and priorities compared to other transportation professionals and trained ecologists. The case study reveals the need for collaboration throughout the stages of design, construction and maintenance in order to efficiently manage roadsides for multiple priorities.

ContributorsGade, Kristin Joan (Author) / Kinzig, Ann P (Thesis advisor) / Grimm, Nancy (Committee member) / Perrings, Charles (Committee member) / Robbins, Paul (Committee member) / Stromberg, Juliet C. (Committee member) / Arizona State University (Publisher)
Created2010
153897-Thumbnail Image.png
Description
Perceptions of climate variability and change reflect local concerns and the actual impacts of climate phenomena on people's lives. Perceptions are the bases of people's decisions to act, and they determine what adaptive measures will be taken. But perceptions of climate may not always be aligned with scientific observations because

Perceptions of climate variability and change reflect local concerns and the actual impacts of climate phenomena on people's lives. Perceptions are the bases of people's decisions to act, and they determine what adaptive measures will be taken. But perceptions of climate may not always be aligned with scientific observations because they are influenced by socio-economic and ecological variables. To find sustainability solutions to climate-change challenges, researchers and policy makers need to understand people's perceptions so that they can account for likely responses. Being able to anticipate responses will increase decision-makers' capacities to create policies that support effective adaptation strategies. I analyzed Mexican maize farmers' perceptions of drought variability as a proxy for their perceptions of climate variability and change. I identified the factors that contribute to the perception of changing drought frequency among farmers in the states of Chiapas, Mexico, and Sinaloa. I conducted Chi-square tests and Logit regression analyses using data from a survey of 1092 maize-producing households in the three states. Results showed that indigenous identity, receipt of credits or loans, and maize-type planted were the variables that most strongly influenced perceptions of drought frequency. The results suggest that climate-adaptation policy will need to consider the social and institutional contexts of farmers' decision-making, as well as the agronomic options for smallholders in each state.
ContributorsRodríguez, Natalia (Author) / Eakin, Hallie (Thesis advisor) / Muneepeerakul, Rachata (Thesis advisor) / Manuel-Navarrete, David (Committee member) / Arizona State University (Publisher)
Created2015
154019-Thumbnail Image.png
Description

An understanding of the formation of spatial heterogeneity is important because spatial heterogeneity leads to functional consequences at the ecosystem scale; however, such an understanding is still limited. Particularly, research simultaneously considering both external variables and internal feedbacks (self-organization) is rare, partly because these two drivers are addressed under different

An understanding of the formation of spatial heterogeneity is important because spatial heterogeneity leads to functional consequences at the ecosystem scale; however, such an understanding is still limited. Particularly, research simultaneously considering both external variables and internal feedbacks (self-organization) is rare, partly because these two drivers are addressed under different methodological frameworks. In this dissertation, I show the prevalence of internal feedbacks and their interaction with heterogeneity in the preexisting template to form spatial pattern. I use a variety of techniques to account for both the top-down template effect and bottom-up self-organization. Spatial patterns of nutrients in stream surface water are influenced by the self-organized patch configuration originating from the internal feedbacks between nutrient concentration, biological patchiness, and the geomorphic template. Clumps of in-stream macrophyte are shaped by the spatial gradient of water permanence and local self-organization. Additionally, significant biological interactions among plant species also influence macrophyte distribution. The relative contributions of these drivers change in time, responding to the larger external environments or internal processes of ecosystem development. Hydrologic regime alters the effect of geomorphic template and self-organization on in-stream macrophyte distribution. The relative importance of niche vs. neutral processes in shaping biodiversity pattern is a function of hydrology: neutral processes are more important in either very high or very low discharge periods. For the spatial pattern of nutrients, as the ecosystem moves toward late succession and nitrogen becomes more limiting, the effect of self-organization intensifies. Changes in relative importance of different drivers directly affect ecosystem macroscopic properties, such as ecosystem resilience. Stronger internal feedbacks in average to wetter years are shown to increase ecosystem resistance to elevated external stress, and make the backward shifts (vegetation loss) much more gradual. But it causes increases in ecosystem hysteresis effect. Finally, I address the question whether functional consequences of spatial heterogeneity feed back to influence the processes from which spatial heterogeneity emerged through a conceptual review. Such feedbacks are not likely. Self-organized spatial patterning is a result of regular biological processes of organisms. Individual organisms do not benefit from such order. It is order for free, and for nothing.

ContributorsDong, Xiaolin (Author) / Grimm, Nancy (Thesis advisor) / Muneepeerakul, Rachata (Thesis advisor) / Franklin, Janet (Committee member) / Heffernan, James B (Committee member) / Sabo, John (Committee member) / Arizona State University (Publisher)
Created2015
153553-Thumbnail Image.png
Description
Social-ecological systems (SES) are replete with hard and soft human-made components (or infrastructures) that are consciously-designed to perform specific functions valued by humans. How these infrastructures mediate human-environment interactions is thus a key determinant of many sustainability problems in present-day SES. This dissertation examines the question of how some of

Social-ecological systems (SES) are replete with hard and soft human-made components (or infrastructures) that are consciously-designed to perform specific functions valued by humans. How these infrastructures mediate human-environment interactions is thus a key determinant of many sustainability problems in present-day SES. This dissertation examines the question of how some of the designed aspects of physical and social infrastructures influence the robustness of SES under global change. Due to the fragility of rural livelihood systems, locally-managed common-pool resource systems that depend on infrastructure, such as irrigated agriculture and community forestry, are of particular importance to address this sustainability question. This dissertation presents three studies that explored the robustness of communal irrigation and forestry systems to economic or environmental shocks. The first study examined how the design of irrigation infrastructure affects the robustness of system performance to an economic shock. Using a stylized dynamic model of an irrigation system as a testing ground, this study shows that changes in infrastructure design can induce fundamental changes in qualitative system behavior (i.e., regime shifts) as well as altered robustness characteristics. The second study explored how connectedness among social units (a kind of social infrastructure) influenced the post-failure transformations of large-N forest commons under economic globalization. Using inferential statistics, the second study argues that some attributes of the social connectedness that helped system robustness in the past made the system more vulnerable to undesirable transformations in the current era. The third study explored the question of how to guide adaptive management of SES for more robustness under uncertainty. This study used an existing laboratory behavioral experiment in which human-subjects tackle a decision problem on collective management of an irrigation system under environmental uncertainty. The contents of group communication and the decisions of individuals were analyzed to understand how configurations of learning-by-doing and other adaptability-related conditions may be causally linked to robustness under environmental uncertainty. The results show that robust systems are characterized by two conditions: active learning-by-doing through outer-loop processes, i.e., frequent updating of shared assumptions or goals that underlie specific group strategies, and frequent monitoring and reflection of past outcomes.
ContributorsYu, Jae Hoon David (Author) / Anderies, John M. (Thesis advisor) / Janssen, Marco A. (Committee member) / Muneepeerakul, Rachata (Committee member) / Arizona State University (Publisher)
Created2015
153321-Thumbnail Image.png
Description
With the projected population growth, the need to produce higher agricultural yield to meet projected demand is hindered by water scarcity. Out of many the approaches that could be implemented to meet the water gap, intensification of agriculture through adoption of advanced agricultural irrigation techniques is the focus for this

With the projected population growth, the need to produce higher agricultural yield to meet projected demand is hindered by water scarcity. Out of many the approaches that could be implemented to meet the water gap, intensification of agriculture through adoption of advanced agricultural irrigation techniques is the focus for this research. Current high water consumption by agricultural sector in Arizona is due to historical dominance in the state economy and established water rights. Efficiency gained in agricultural water use in Arizona has the most potential to reduce the overall water consumption. This research studies the agricultural sector and water management of several counties in Arizona (Maricopa, Pinal, and Yuma). Several research approaches are employed: modeling of agricultural technology adoption using replicator dynamics, interview with water managers and farmers, and Arizona water management law and history review. Using systems thinking, the components of the local farming environment are documented through socio-ecological system/robustness lenses. The replicator dynamics model is employed to evaluate possible conditions in which water efficient agricultural irrigation systems proliferate. The evaluation of conditions that promote the shift towards advanced irrigation technology is conducted through a combination of literature review, interview data, and model analysis. Systematic shift from the currently dominant flood irrigation toward a more water efficient irrigation technologies could be attributed to the followings: the increase in advanced irrigation technology yield efficiency; the reduction of advanced irrigation technology implementation and maintenance cost; the change in growing higher value crop; and the change in growing/harvesting time where there is less competition from other states. Insights learned will further the knowledge useful for this arid state's agricultural policy decision making that will both adhere to the water management goals and meet the projected food production and demand gap.
ContributorsBudiyanto, Yoshi (Author) / Muneepeerakul, Rachata (Thesis advisor) / Smith, Karen (Committee member) / Abbott, Joshua (Committee member) / Arizona State University (Publisher)
Created2014
153018-Thumbnail Image.png
Description
Urban scaling analysis has introduced a new scientific paradigm to the study of cities. With it, the notions of size, heterogeneity and structure have taken a leading role. These notions are assumed to be behind the causes for why cities differ from one another, sometimes wildly. However, the mechanisms by

Urban scaling analysis has introduced a new scientific paradigm to the study of cities. With it, the notions of size, heterogeneity and structure have taken a leading role. These notions are assumed to be behind the causes for why cities differ from one another, sometimes wildly. However, the mechanisms by which size, heterogeneity and structure shape the general statistical patterns that describe urban economic output are still unclear. Given the rapid rate of urbanization around the globe, we need precise and formal mathematical understandings of these matters. In this context, I perform in this dissertation probabilistic, distributional and computational explorations of (i) how the broadness, or narrowness, of the distribution of individual productivities within cities determines what and how we measure urban systemic output, (ii) how urban scaling may be expressed as a statistical statement when urban metrics display strong stochasticity, (iii) how the processes of aggregation constrain the variability of total urban output, and (iv) how the structure of urban skills diversification within cities induces a multiplicative process in the production of urban output.
ContributorsGómez-Liévano, Andrés (Author) / Lobo, Jose (Thesis advisor) / Muneepeerakul, Rachata (Thesis advisor) / Bettencourt, Luis M. A. (Committee member) / Chowell-Puente, Gerardo (Committee member) / Arizona State University (Publisher)
Created2014
153722-Thumbnail Image.png
Description
Alfalfa is a major feed crop widely cultivated in the United States. It is the fourth largest crop in acreage in the US after corn, soybean, and all types of wheat. As of 2003, about 48% of alfalfa was produced in the western US states where alfalfa ranks first, second,

Alfalfa is a major feed crop widely cultivated in the United States. It is the fourth largest crop in acreage in the US after corn, soybean, and all types of wheat. As of 2003, about 48% of alfalfa was produced in the western US states where alfalfa ranks first, second, or third in crop acreage. Considering that the western US is historically water-scarce and alfalfa is a water-intensive crop, it creates a concern about exacerbating the current water crisis in the US west. Furthermore, the recent increased export of alfalfa from the western US states to China and the United Arab Emirates has fueled the debate over the virtual water content embedded in the crop. In this study, I analyzed changes of cropland systems under the three basic scenarios, using a stylized model with a combination of dynamical, hydrological, and economic elements. The three scenarios are 1) international demands for alfalfa continue to grow (or at least to stay high), 2) deficit irrigation is widely imposed in the dry region, and 3) long-term droughts persist or intensify reducing precipitation. The results of this study sheds light on how distribution of crop areas responds to climatic, economic, and institutional conditions. First, international markets, albeit small compared to domestic markets, provide economic opportunities to increase alfalfa acreage in the dry region. Second, potential water savings from mid-summer deficit irrigation can be used to expand alfalfa production in the dry region. Third, as water becomes scarce, farmers more quickly switch to crops that make more economic use of the limited water.
ContributorsKim, Booyoung (Author) / Muneepeerakul, Rachata (Thesis advisor) / Ruddell, Benjamin (Committee member) / Aggarwal, Rimjhim (Committee member) / Arizona State University (Publisher)
Created2015
153097-Thumbnail Image.png
Description
This dissertation consists of three substantive chapters. The first substantive chapter investigates the premature harvesting problem in fisheries. Traditionally, yield-per-recruit analysis has been used to both assess and address the premature harvesting of fish stocks. However, the fact that fish size often affects the unit price suggests that this approach

This dissertation consists of three substantive chapters. The first substantive chapter investigates the premature harvesting problem in fisheries. Traditionally, yield-per-recruit analysis has been used to both assess and address the premature harvesting of fish stocks. However, the fact that fish size often affects the unit price suggests that this approach may be inadequate. In this chapter, I first synthesize the conventional yield-per-recruit analysis, and then extend this conventional approach by incorporating a size-price function for a revenue-per-recruit analysis. An optimal control approach is then used to derive a general bioeconomic solution for the optimal harvesting of a short-lived single cohort. This approach prevents economically premature harvesting and provides an "optimal economic yield". By comparing the yield- and revenue-per-recruit management strategies with the bioeconomic management strategy, I am able to test the economic efficiency of the conventional yield-per-recruit approach. This is illustrated with a numerical study. It shows that a bioeconomic strategy can significantly improve economic welfare compared with the yield-per-recruit strategy, particularly in the face of high natural mortality. Nevertheless, I find that harvesting on a revenue-per-recruit basis improves management policy and can generate a rent that is close to that from bioeconomic analysis, in particular when the natural mortality is relatively low.

The second substantive chapter explores the conservation potential of a whale permit market under bounded economic uncertainty. Pro- and anti-whaling stakeholders are concerned about a recently proposed, "cap and trade" system for managing the global harvest of whales. Supporters argue that such an approach represents a novel solution to the current gridlock in international whale management. In addition to ethical objections, opponents worry that uncertainty about demand for whale-based products and the environmental benefits of conservation may make it difficult to predict the outcome of a whale share market. In this study, I use population and economic data for minke whales to examine the potential ecological consequences of the establishment of a whale permit market in Norway under bounded but significant economic uncertainty. A bioeconomic model is developed to evaluate the influence of economic uncertainties associated with pro- and anti- whaling demands on long-run steady state whale population size, harvest, and potential allocation. The results indicate that these economic uncertainties, in particular on the conservation demand side, play an important role in determining the steady state ecological outcome of a whale share market. A key finding is that while a whale share market has the potential to yield a wide range of allocations between conservation and whaling interests - outcomes in which conservationists effectively "buy out" the whaling industry seem most likely.

The third substantive chapter examines the sea lice externality between farmed fisheries and wild fisheries. A central issue in the debate over the effect of fish farming on the wild fisheries is the nature of sea lice population dynamics and the wild juvenile mortality rate induced by sea lice infection. This study develops a bioeconomic model that integrates sea lice population dynamics, fish population dynamics, aquaculture and wild capture salmon fisheries in an optimal control framework. It provides a tool to investigate sea lice control policy from the standpoint both of private aquaculture producers and wild fishery managers by considering the sea lice infection externality between farmed and wild fisheries. Numerical results suggest that the state trajectory paths may be quite different under different management regimes, but approach the same steady state. Although the difference in economic benefits is not significant in the particular case considered due to the low value of the wild fishery, I investigate the possibility of levying a tax on aquaculture production for correcting the sea lice externality generated by fish farms.
ContributorsHuang, Biao (Author) / Abbott, Joshua K (Thesis advisor) / Perrings, Charles (Thesis advisor) / Gerber, Leah R. (Committee member) / Muneepeerakul, Rachata (Committee member) / Schoon, Michael (Committee member) / Arizona State University (Publisher)
Created2014