Matching Items (202)
151862-Thumbnail Image.png
Description
This dissertation describes the development of a state-of-the-art immersive media environment and its potential to motivate high school youth with autism to vocally express themselves. Due to the limited availability of media environments in public education settings, studies on the use of such systems in special education contexts are rare.

This dissertation describes the development of a state-of-the-art immersive media environment and its potential to motivate high school youth with autism to vocally express themselves. Due to the limited availability of media environments in public education settings, studies on the use of such systems in special education contexts are rare. A study called Sea of Signs utilized the Situated Multimodal Art Learning Lab (SMALLab), to present a custom-designed conversational scenario for pairs of youth with autism. Heuristics for building the scenario were developed following a 4-year design-based research approach that fosters social interaction, communication, and self-expression through embodied design. Sea of Signs implemented these heuristics through an immersive experience, supported by spatial and audio-visual feedback that helped clarify and reinforce students' vocal expressions within a partner-based conversational framework. A multiple-baseline design across participants was used to determine the extent to which individuals exhibited observable change as a result of the activity in SMALLab. Teacher interviews were conducted prior to the experimental phase to identify each student's pattern of social interaction, communication, and problem-solving strategies in the classroom. Ethnographic methods and video coding were used throughout the experimental phase to assess whether there were changes in (a) speech duration per session and per turn, (b) turn-taking patterns, and (c) teacher prompting per session. In addition, teacher interviews were conducted daily after every SMALLab session to further triangulate the nature of behaviors observed in each session. Final teacher interviews were conducted after the experimental phase to collect data on possible transfer of behavioral improvements into students' classroom lives beyond SMALLab. Results from this study suggest that the activity successfully increased independently generated speech in some students, while increasing a focus on seeking out social partners in others. Furthermore, the activity indicated a number of future directions in research on the nature of voice and discourse, rooted in the use of aesthetics and phenomenology, to augment, extend, and encourage developments in directed communication skills for youth with autism.
ContributorsTolentino, Lisa (Author) / Paine, Garth (Thesis advisor) / Kozleski, Elizabeth B. (Thesis advisor) / Kelliher, Aisling (Committee member) / Megowan-Romanowicz, Colleen (Committee member) / Arizona State University (Publisher)
Created2013
136150-Thumbnail Image.png
Description
The fundamental concept that I have developed and applied throughout my college career is to try to discover innovative ways to combine the experimental production techniques that I learned in my classes with more traditional songwriting structures. In doing so, I explore the line that distinguishes the two from each

The fundamental concept that I have developed and applied throughout my college career is to try to discover innovative ways to combine the experimental production techniques that I learned in my classes with more traditional songwriting structures. In doing so, I explore the line that distinguishes the two from each other and instill a foreign, yet familiar feeling within the listener. With this approach in mind, I created audio for a variety of media and attempted to push myself in terms of genre and production, ultimately allowing myself to survey a multitude of instruments and audio effects outside of what I learned in my classes. In my portfolio, I have an organized layout of my audio work within the categories of film soundtracks, game audio, and original music, along with how to contact me and information about the licensing of my music. In learning how to create a professional online portfolio, I learned more about the business side of music and where I stand regarding how people listen to my music or use it within their own projects. The process of creating my portfolio taught me a lot about the relationships that I want to pursue with artists that I work with in the future. My portfolio can be found at: markusrennemann.weebly.com
ContributorsRennemann, Markus Horst Florian (Author) / Ingalls, Todd (Thesis director) / Paine, Garth (Committee member) / Barrett, The Honors College (Contributor) / School of Arts, Media and Engineering (Contributor)
Created2015-05
ContributorsSpring, Robert (Performer) / Gardner, Joshua (Performer) / Buck, Elizabeth (Performer) / Schuring, Martin (Performer) / Micklich, Albie (Performer) / Ericson, John Q. (John Quincy), 1962- (Performer) / Smith, J. B., 1957- (Performer) / Ryan, Russell (Contributor) / ASU Library. Music Library (Publisher)
Created2018-09-16
ContributorsSmith, J. B., 1957- (Director) / Mancuso, Simone (Director) / Contemporary Percussion Ensemble (Performer) / ASU Library. Music Library (Publisher)
Created2018-04-18
149461-Thumbnail Image.png
Description
This thesis investigates the role of activity visualization tools in increasing group awareness at the workspace. Today, electronic calendaring tools are widely used in the workplace. The primary function is to enable each person maintain a work schedule. They also are used to schedule meetings and share work details when

This thesis investigates the role of activity visualization tools in increasing group awareness at the workspace. Today, electronic calendaring tools are widely used in the workplace. The primary function is to enable each person maintain a work schedule. They also are used to schedule meetings and share work details when appropriate. However, a key limitation of current tools is that they do not enable people in the workplace to understand the activity of the group as a whole. A tool that increases group awareness would promote reflection; it would enable thoughtful engagement with one's co-workers. I have developed two tools: the first tool enables the worker to examine detailed task information of one's own tasks, within the context of his/her peers' anonymized task data. The second tool is a public display to promote group reflection. I have used an iterative design methodology to refine the tools. I developed ActivityStream desktop tool that enables users to examine the detailed information of their own activities and the aggregate information of other peers' activities. ActivityStream uses a client-server architecture. The server collected activity data from each user by parsing RSS feeds associated with their preferred online calendaring and task management tool, on a daily basis. The client software displays personalized aggregate data and user specific tasks, including task types. The client display visualizes the activity data at multiple time scales. The activity data for each user is represented though discrete blocks; interacting with the block will reveal task details. The activity of the rest of the group is anonymized and aggregated. ActivityStream visualizes the aggregated data via Bezier curves. I developed ActivityStream public display that shows a group people's activity levels change over time to promote group reflection. In particular, the public display shows the anonymized task activity data, over the course of one year. The public display visualizes data for each user using a Bezier curve. The display shows data from all users simultaneously. This representation enables users to reflect on the relationships across the group members, over the course of one year. The survey results revealed that users are more aware of their peers' activities in the workspace.
ContributorsZhang, Lu (Author) / Sundaram, Hari (Thesis advisor) / Qian, Gang (Thesis advisor) / Kelliher, Aisling (Committee member) / Arizona State University (Publisher)
Created2010
149464-Thumbnail Image.png
Description
Online social networks, including Twitter, have expanded in both scale and diversity of content, which has created significant challenges to the average user. These challenges include finding relevant information on a topic and building social ties with like-minded individuals. The fundamental question addressed by this thesis is if an individual

Online social networks, including Twitter, have expanded in both scale and diversity of content, which has created significant challenges to the average user. These challenges include finding relevant information on a topic and building social ties with like-minded individuals. The fundamental question addressed by this thesis is if an individual can leverage social network to search for information that is relevant to him or her. We propose to answer this question by developing computational algorithms that analyze a user's social network. The features of the social network we analyze include the network topology and member communications of a specific user's social network. Determining the "social value" of one's contacts is a valuable outcome of this research. The algorithms we developed were tested on Twitter, which is an extremely popular social network. Twitter was chosen due to its popularity and a majority of the communications artifacts on Twitter is publically available. In this work, the social network of a user refers to the "following relationship" social network. Our algorithm is not specific to Twitter, and is applicable to other social networks, where the network topology and communications are accessible. My approaches are as follows. For a user interested in using the system, I first determine the immediate social network of the user as well as the social contacts for each person in this network. Afterwards, I establish and extend the social network for each user. For each member of the social network, their tweet data are analyzed and represented by using a word distribution. To accomplish this, I use WordNet, a popular lexical database, to determine semantic similarity between two words. My mechanism of search combines both communication distance between two users and social relationships to determine the search results. Additionally, I developed a search interface, where a user can interactively query the system. I conducted preliminary user study to evaluate the quality and utility of my method and system against several baseline methods, including the default Twitter search. The experimental results from the user study indicate that my method is able to find relevant people and identify valuable contacts in one's social circle based on the query. The proposed system outperforms baseline methods in terms of standard information retrieval metrics.
ContributorsXu, Ke (Author) / Sundaram, Hari (Thesis advisor) / Ye, Jieping (Committee member) / Kelliher, Aisling (Committee member) / Arizona State University (Publisher)
Created2010
135398-Thumbnail Image.png
Description
This paper outlines the development of a software application that explores the plausibility and potential of interacting with three-dimensional sound sources within a virtual environment. The intention of the software application is to allow a user to become engaged with a collection of sound sources that can be perceived both

This paper outlines the development of a software application that explores the plausibility and potential of interacting with three-dimensional sound sources within a virtual environment. The intention of the software application is to allow a user to become engaged with a collection of sound sources that can be perceived both graphically and audibly within a spatial, three-dimensional context. The three-dimensional sound perception is driven primarily by a binaural implementation of a higher order ambisonics framework while graphics and other data are processed by openFrameworks, an interactive media framework for C++. Within the application, sound sources have been given behavioral functions such as flocking or orbit patterns, animating their positions within the environment. The author will summarize the design process and rationale for creating such a system and the chosen approach to implement the software application. The paper will also provide background approaches to spatial audio, gesture and virtual reality embodiment, and future possibilities for the existing project.
ContributorsBurnett, Garrett (Author) / Paine, Garth (Thesis director) / Pavlic, Theodore (Committee member) / School of Humanities, Arts, and Cultural Studies (Contributor) / School of Arts, Media and Engineering (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
ContributorsMoio, Dom (Performer) / Tilburg, Shaun (Performer) / Smith, J. B., 1957- (Performer) / Mancuso, Simone (Performer) / Russo, Sam (Performer) / Sample, Connor (Performer) / Spring, Robert (Performer) / Tipei, Filip (Performer) / Wilson, Viviana Cumplido (Performer) / ASU Library. Music Library (Publisher)
Created2018-02-04
190928-Thumbnail Image.png
Description
The importance of interactive electronic devices in the twenty-first century is a quickly expanding one, and the field of music technology is not exempt from this. Most traditional acoustic instruments pose challenges for individuals lacking fine motor skills, coordination, or grip strength. The author has responded to this issue as

The importance of interactive electronic devices in the twenty-first century is a quickly expanding one, and the field of music technology is not exempt from this. Most traditional acoustic instruments pose challenges for individuals lacking fine motor skills, coordination, or grip strength. The author has responded to this issue as they experience it by developing a programmable interactive instrument system using a Mugic Motion System hardware, which includes a gyroscopic sensor, and Max/MSP, a visual programming environment which allows for customizable musical engagement for a variety of user types and requirements. This thesis explores the potential of interactive electronic devices to revolutionize the field of music as well as their potential in larger immersive environments, allowing creativity to reach a wider range of people regardless of physical limitations. The use of interactive sensor devices presents a not yet completely explored path for creating forms of sonic and multimedia interaction to a degree that has not yet become standard within either the musical field nor the emerging field of immersive environments and storytelling. The implications of a more fleshed out sensor-based system extend beyond the sound potential explored within this paper, and could allow interaction with visual aspects and motion based interactive art installations. This technology can also be applied as part of larger interactive systems, such as those found in theme parks and other large interactive attraction spaces. The author offers a novel approach to the democratization of music by leveraging the potential of interactive electronic devices for a population traditionally overlooked in music.
ContributorsMeconiates, Stacia (Author) / Temple, Alex (Thesis advisor) / Paine, Garth (Committee member) / Cechanowicz, Laura (Committee member) / Arizona State University (Publisher)
Created2023