Matching Items (2)
Description
Computer simulations are gaining recognition as educational tools, but in general there is still a line dividing a simulation from a game. Yet as many recent and successful video games heavily involve simulations (SimCity comes to mind), there is not only the growing question of whether games can be used

Computer simulations are gaining recognition as educational tools, but in general there is still a line dividing a simulation from a game. Yet as many recent and successful video games heavily involve simulations (SimCity comes to mind), there is not only the growing question of whether games can be used for educational purposes, but also of how a game might qualify as educational. Endemic: The Agent is a project that tries to bridge the gap between educational simulations and educational games. This paper outlines the creation of the project and the characteristics that make it an educational tool, a simulation, and a game.
ContributorsFish, Derek Austin (Author) / Karr, Timothy (Thesis director) / Marcus, Andrew (Committee member) / Jones, Donald (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Physics (Contributor)
Created2013-05
129043-Thumbnail Image.png
Description

Background: The evolutionary diversification of gene families through gene creation (and loss) is a dynamic process believed to be critical to the evolution of functional novelty. Previous identification of a closely related family of eight annotated metalloprotease genes of the M17 Merops family in the Drosophila sperm proteome (termed, S perm-L

Background: The evolutionary diversification of gene families through gene creation (and loss) is a dynamic process believed to be critical to the evolution of functional novelty. Previous identification of a closely related family of eight annotated metalloprotease genes of the M17 Merops family in the Drosophila sperm proteome (termed, S perm-L eucylA minoP eptidases, S-LAPs 1-8) led us to hypothesize that this gene family may have experienced such a diversification during insect evolution.

Results: To assess putative functional activities of S-LAPs, we (i) demonstrated that all S-LAPs are specifically expressed in the testis, (ii) confirmed their presence in sperm by two-dimensional gel electrophoresis and mass spectrometry, (iii) determined that they represent a major portion of the total protein in sperm and (iv) identified aminopeptidase enzymatic activity in sperm extracts using LAP-specific substrates. Functionally significant divergence at the canonical M17 active site indicates that the largest phylogenetic group of S-LAPs lost catalytic activity and likely acquired novel, as yet undetermined, functions in sperm prior to the expansion of the gene family.

Conclusions: Comparative genomic and phylogenetic analyses revealed the dramatic expansion of the S-LAP gene family during Drosophila evolution and copy number heterogeneity in the genomes of related insects. This finding, in conjunction with the loss of catalytic activity and potential neofunctionalization amongst some family members, extends empirical support for pervasive "revolving door" turnover in the evolution of reproductive gene family composition and function.

Created2011-04-05