Matching Items (21)
136225-Thumbnail Image.png
Description
High concentrations of carbon monoxide and particulate matter can cause respiratory disease, illness, and death in high doses. Air pollution is a concern in many urban areas of emerging markets that rely on outdated technologies for transportation and electricity generation; rural air quality is also a concern when noting the

High concentrations of carbon monoxide and particulate matter can cause respiratory disease, illness, and death in high doses. Air pollution is a concern in many urban areas of emerging markets that rely on outdated technologies for transportation and electricity generation; rural air quality is also a concern when noting the high prevalence of products of incomplete combustion resulting from open fires for cooking and heating. Monitoring air quality is an essential step to identifying these and other factors that affect air quality, and thereafter informing engineering and policy decisions to improve the quality of air. This study seeks to measure changes in air quality across spatial and temporal domains, with a specific focus on microclimates within an urban area. A prototype, low-cost air quality monitoring device has been developed to measure the concentrations of particulate matter, ozone, and carbon monoxide multiple times per minute. The device communicates data wirelessly via cell towers, and can run off-grid using a solar PV-battery system. The device can be replicated and deployed across urban regions for high-fidelity emissions monitoring to explore the effect of anthropogenic and environmental factors on intra-hour air quality. Hardware and software used in the device is described, and the wireless data communication protocols and capabilities are discussed.
ContributorsReilly, Kyle (Co-author) / Birner, Michael (Co-author) / Johnson, Nathan (Thesis director) / Gary, Kevin (Committee member) / Barrett, The Honors College (Contributor)
Created2015-05
136669-Thumbnail Image.png
Description
"Seventy five percent of the world's poor live in rural areas of developing countries, where most people's livelihoods rely directly on agriculture." (USAid, 2014) Reduced levels of crop production and the accompanying problems of malnourishment exist all over the world. In rural Peru, for example, 11 percent of the population

"Seventy five percent of the world's poor live in rural areas of developing countries, where most people's livelihoods rely directly on agriculture." (USAid, 2014) Reduced levels of crop production and the accompanying problems of malnourishment exist all over the world. In rural Peru, for example, 11 percent of the population is malnourished. (Global Healthfacts.org, 2012) Since the success in agriculture relies importantly on the fertility of the soil, it is imperative that any efforts at reversing this trend be primarily directed at improving the existing soils. This, in turn, will increase crop yields, and if done properly, will also conserve natural resources and maximize profits for farmers. In order to improve the lives of those at the bottom of the pyramid through agriculture, certain tools and knowledge must be provided in order to empower such persons to help themselves. An ancient method of soil improvement, known as Terra Preta do Indio (Indian dark earth), was discovered by Anthropologists in the 1800's. These dark, carbon-rich, soils are notable for their high fertility, high amounts of plant available nutrients, and their high moisture retention rates. The key to their long-lasting fertility and durability is the presence of high levels of biochar, a highly stable organic carbon \u2014 produced when organic matter (crop residues, food waste, manure, etc.) is burned at low temperatures in the absence of oxygen. Research has shown that when charcoal (biochar) and fertilizers are combined, it can yield as much as 880 percent more than when fertilizers are used by themselves. (Steiner, University of Bayreuth, 2004)
ContributorsStefanik, Kathleen Ann (Author) / Henderson, Mark (Thesis director) / Johnson, Nathan (Committee member) / Barrett, The Honors College (Contributor) / Human Systems Engineering (Contributor)
Created2014-12
Description
The objective of the research was to simulate interdependencies between municipal water-power distribution systems in a theoretical section of the Phoenix urban environment that had variable population density and highest ambient temperature. Real-time simulations were run using the Resilient Infrastructure Simulation Environment (RISE) software developed by Laboratory for Energy and

The objective of the research was to simulate interdependencies between municipal water-power distribution systems in a theoretical section of the Phoenix urban environment that had variable population density and highest ambient temperature. Real-time simulations were run using the Resilient Infrastructure Simulation Environment (RISE) software developed by Laboratory for Energy and Power Solutions (LEAPS) at ASU. The simulations were run at estimated population density to simulate urbanism, and temperature conditions to simulate increased urban heat island effect of Phoenix at 2020, 2040, 2060, and 2080 using the IEEE 13 bus test case were developed. The water model was simulated by extrapolated projections of increased population from the city of Phoenix census data. The goal of the simulations was that they could be used to observe the critical combination of system factors that lead to cascading failures and overloads across the interconnected system. Furthermore, a Resilient Infrastructure Simulation Environment (RISE) user manual was developed and contains an introduction to RISE and how it works, 2 chapters detailing the components of power and water systems, respectively, and a final section describing the RISE GUI as a user. The user manual allows prospective users, such as utility operators or other stakeholders, to familiarize themselves with both systems and explore consequences of altering system properties in RISE by themselves. Parts of the RISE User Manual were used in the online "help" guide on the RISE webpage.
ContributorsSchadel, Suzanne (Author) / Johnson, Nathan (Thesis director) / Hamel, Derek (Committee member) / School of International Letters and Cultures (Contributor) / School of Sustainable Engineering & Built Envirnmt (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
132768-Thumbnail Image.png
Description
This paper analyzes Burkina Faso’s Souro Sanou University Hospital Center’s energy needs and discusses whether or not solar panels are a good investment. This paper also discusses a way to limit the damage caused by power outages. The hospital has a history of problems with power outages; in the summer

This paper analyzes Burkina Faso’s Souro Sanou University Hospital Center’s energy needs and discusses whether or not solar panels are a good investment. This paper also discusses a way to limit the damage caused by power outages. The hospital has a history of problems with power outages; in the summer they have power outages every other day lasting between one to four hours, and in the rainy season they have outages once every other week lasting the same amount of time.
The first step in this analysis was collecting relevant data which includes: location, electricity rates, energy consumption, and existing assets. The data was entered into a program called HOMER. HOMER is a program which analyzes an electrical system and determines the best configuration and usage of assets to get the lowest levelized cost of energy (LCOE). In HOMER, five different analyses were performed. They reviewed the hospital’s energy usage over 25 years: the current situation, one of the current situation with added solar panels, and another where the solar panels have single axis tracking. The other two analyses created incentives to have more solar panels, one situation with net metering, and one with a sellback rate of 0.03 $/kWh. The result of the analysis concluded that the ideal situation would have solar panels with a capacity of 300 kW, and the LCOE in this situation will be 0.153 $/kWh. The analysis shows that investing in solar panels will save the hospital approximately $65,500 per year, but the initial investment of $910,000 only allows for a total savings of $61,253 over the life of the project. The analysis also shows that if the electricity company, Sonabel, eventually buys back electricity then net metering would be more profitable than reselling electricity for the hospital.
Solar panels will help the hospital save money over time, but they will not stop power outages from happening at the hospital. For the outages to stop affecting the hospital’s operations they will have to invest in an uninterrupted power supply (UPS). The UPS will power the hospital for the time between when the power goes out and when their generators are turning on which makes it an essential investment. This will stop outages from affecting the hospital, and if the power goes out during the day then the solar panels can help supplement the energy production which will take some of the strain from their generators.
The results of this study will be sent to officials at the hospital and they can decide if the large initial investment justifies the savings. If the solar panels and UPS can save one life, then maybe the large initial investment is worth it.
ContributorsSchmidt, Evin Khalil (Author) / Johnson, Nathan (Thesis director) / Miner, Mark (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
171644-Thumbnail Image.png
Description
Individuals and organizations have greater access to the world's population than ever before. The effects of Social Media Influence have already impacted the behaviour and actions of the world's population. This research employed mixed methods to investigate the mechanisms to further the understand of how Social Media Influence Campaigns (SMIC)

Individuals and organizations have greater access to the world's population than ever before. The effects of Social Media Influence have already impacted the behaviour and actions of the world's population. This research employed mixed methods to investigate the mechanisms to further the understand of how Social Media Influence Campaigns (SMIC) impact the global community as well as develop tools and frameworks to conduct analysis. The research has qualitatively examined the perceptions of Social Media, specifically how leadership believe it will change and it's role within future conflict. This research has developed and tested semantic ontological modelling to provide insights into the nature of network related behaviour of SMICs. This research also developed exemplar data sets of SMICs. The insights gained from initial research were used to train Machine Learning classifiers to identify thematically related campaigns. This work has been conducted in close collaboration with Alliance Plus Network partner, University of New South Wales and the Australian Defence Force.
ContributorsJohnson, Nathan (Author) / Reisslein, Martin (Thesis advisor) / Turnbull, Benjamin (Committee member) / Zhao, Ming (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2022
Description

There are approximately 300 unelectrified villages in Fiji. These villages are scattered across the many islands of Fiji and lack a connection to the main electrical grid, which is only available on the islands of Viti Levu and Vanua Levu. Mini-grids and solar home systems are effective options for rural

There are approximately 300 unelectrified villages in Fiji. These villages are scattered across the many islands of Fiji and lack a connection to the main electrical grid, which is only available on the islands of Viti Levu and Vanua Levu. Mini-grids and solar home systems are effective options for rural electrification that cannot be reached through grid extension. This work completes data acquisition, modeling, and technical and financial analysis to design mini-grid systems for remote communities. These designs are compared and tested against generation outages, storm simulations and carbon emission reduction. Having backup diesel generators provides an easy solution to the issue of resiliency during storms or expected maintenance though creates more emissions than solar-only or hybrid counterparts. Systems with net zero carbon emissions are also considered to be realistic options if these align closer to project goals and are seen to be reliable for up to a week with limited solar irradiance. An assessment was also completed of components locally available to build the systems.

ContributorsBauer, Joseph (Author) / Johnson, Nathan (Thesis director) / van Hove, Elena (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor)
Created2023-05
161802-Thumbnail Image.png
Description
Rapid increases in the installed amounts of Distributed Energy Resources are forcing a paradigm shift to guarantee stability, security, and economics of power distribution systems. This dissertation explores these challenges and proposes solutions to enable higher penetrations of grid-edge devices. The thesis shows that integrating Graph Signal Processing with State

Rapid increases in the installed amounts of Distributed Energy Resources are forcing a paradigm shift to guarantee stability, security, and economics of power distribution systems. This dissertation explores these challenges and proposes solutions to enable higher penetrations of grid-edge devices. The thesis shows that integrating Graph Signal Processing with State Estimation formulation allows accurate estimation of voltage phasors for radial feeders under low-observability conditions using traditional measurements. Furthermore, the Optimal Power Flow formulation presented in this work can reduce the solution time of a bus injection-based convex relaxation formulation, as shown through numerical results. The enhanced real-time knowledge of the system state is leveraged to develop new approaches to cyber-security of a transactive energy market by introducing a blockchain-based Electron Volt Exchange framework that includes a distributed protocol for pricing and scheduling prosumers' production/consumption while keeping constraints and bids private. The distributed algorithm prevents power theft and false data injection by comparing prosumers' reported power exchanges to models of expected power exchanges using measurements from grid sensors to estimate system state. Necessary hardware security is described and integrated into underlying grid-edge devices to verify the provenance of messages to and from these devices. These preventive measures for securing energy transactions are accompanied by additional mitigation measures to maintain voltage stability in inverter-dominated networks by expressing local control actions through Lyapunov analysis to mitigate cyber-attack and generation intermittency effects. The proposed formulation is applicable as long as the Volt-Var and Volt-Watt curves of the inverters can be represented as Lipschitz constants. Simulation results demonstrate how smart inverters can mitigate voltage oscillations throughout the distribution network. Approaches are rigorously explored and validated using a combination of real distribution networks and synthetic test cases. Finally, to overcome the scarcity of real data to test distribution systems algorithms a framework is introduced to generate synthetic distribution feeders mapped to real geospatial topologies using available OpenStreetMap data. The methods illustrate how to create synthetic feeders across the entire ZIP Code, with minimal input data for any location. These stackable scientific findings conclude with a brief discussion of physical deployment opportunities to accelerate grid modernization efforts.
ContributorsSaha, Shammya Shananda (Author) / Johnson, Nathan (Thesis advisor) / Scaglione, Anna (Thesis advisor) / Arnold, Daniel (Committee member) / Boscovic, Dragan (Committee member) / Arizona State University (Publisher)
Created2021
188186-Thumbnail Image.png
Description

Abstract:

Cascading failures across a network propagate localized issues to more broad and potentially unexpected failures in the network. In power networks, where load must be delivered in real-time by a generation source, network layout is an important part of cascading failure analysis. In lieu of real power network data protected

Abstract:

Cascading failures across a network propagate localized issues to more broad and potentially unexpected failures in the network. In power networks, where load must be delivered in real-time by a generation source, network layout is an important part of cascading failure analysis. In lieu of real power network data protected for security reasons, we can use synthetic networks for academic purposes in developing a validating methodology. A contingency analysis technique is used to identify cascading failures, and this involves randomly selecting initial failure points in the network and observing how current violations propagate across the network. This process is repeated many times to understand the breadth of potential failures that may occur, and the observed trends in failure propagation are analyzed and compared to generate recommendations to prevent and adapt to failure. Emphasis is placed on power transmission networks where failures can be more catastrophic.

ContributorsSparks, Ryan M. (Author) / Hoff, Ryan (Michael) (Author) / Johnson, Nathan (Author) / Chester, Mikhail (Author)
187430-Thumbnail Image.png
Description
Infrastructure managers are continually challenged to reorient their organizations to mitigate disturbances. Disturbances to infrastructure constantly intensify, and the world and its intricate systems are becoming more connected and complex. This complexity often leads to disturbances and cascading failures. Some of these events unfold in extreme ways previously unimagined (i.e.,

Infrastructure managers are continually challenged to reorient their organizations to mitigate disturbances. Disturbances to infrastructure constantly intensify, and the world and its intricate systems are becoming more connected and complex. This complexity often leads to disturbances and cascading failures. Some of these events unfold in extreme ways previously unimagined (i.e., Black Swan events). Infrastructure managers currently seek pathways through this complexity. To this end, reimagined – multifaceted – definitions of resilience must inform future decisions. Moreover, the hazardous environment of the Anthropocene demands flexibility and dynamic reprioritization of infrastructure and resources during disturbances. In this dissertation, the introduction will briefly explain foundational concepts, frameworks, and models that will inform the rest of this work. Chapter 2 investigates the concept of dynamic criticality: the skill to reprioritize amidst disturbances, repeating this process with each new disturbance. There is a dearth of insight requisite skillsets for infrastructure organizations to attain dynamic criticality. Therefore, this dissertation searches other industries and finds goals, structures, sensemaking, and strategic best practices to propose a contextualized framework for infrastructure. Chapters 3 and 4 seek insight into modeling infrastructure interdependencies and cascading failure to elucidate extreme outcomes such as Black Swans. Chapter 3 explores this concept through a theoretical analysis considering the use of realistic but fictional (i.e., synthetic) models to simulate interdependent behavior and cascading failures. This chapter also discusses potential uses of synthetic networks for infrastructure resilience research and barriers to future success. Chapter 4 tests the preceding theoretical analysis with an empirical study. Chapter 4 builds realistic networks with dependency between power and water models and simulates cascading failure. The discussion considers the future application of similar modeling efforts and how these techniques can help infrastructure managers scan the horizon for Black Swans. Finally, Chapter 5 concludes the dissertation with a synthesis of the findings from the previous chapters, discusses the boundaries and limitations, and proposes inspirations for future work.
ContributorsHoff, Ryan Michael (Author) / Chester, Mikhail V (Thesis advisor) / Allenby, Braden (Committee member) / Johnson, Nathan (Committee member) / McPhearson, Timon (Committee member) / Arizona State University (Publisher)
Created2023
166561-Thumbnail Image.png
Description

One answer to the lack of general knowledge for alternative energy and integration topics is seen in the workforce development content Laboratory of Energy and Power Solutions has generated for the past 6 years. LEAPS is a world-changing organization that provides both technical and business solutions in areas of grid

One answer to the lack of general knowledge for alternative energy and integration topics is seen in the workforce development content Laboratory of Energy and Power Solutions has generated for the past 6 years. LEAPS is a world-changing organization that provides both technical and business solutions in areas of grid modernization, workforce development, and global energy access that facilitates the global transition to a resilient, low-carbon economy. This paper will aim to explain the contributions of David Hobgood, an Arizona State University senior, to LEAPS workforce development content through the course of the Spring 2022 semester. This paper goes into detail on the process of completing this educational content, amplifies key aspect, and presents the results of a two week pilot that presented the generated content.

ContributorsHobgood, David (Author) / Johnson, Nathan (Thesis director) / Janko, Samantha (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2022-05