Matching Items (1)
135461-Thumbnail Image.png
Description
Reactions between minerals and organic compounds in hydrothermal systems (high temperature and presence of H2O) are critical in the Earth’s deep carbon cycle and may have implications in the origins of life. Previous work demonstrated that in the absence of a mineral, hydrothermal reaction of cis- and trans-1,2-dimethylcyclohexane is

Reactions between minerals and organic compounds in hydrothermal systems (high temperature and presence of H2O) are critical in the Earth’s deep carbon cycle and may have implications in the origins of life. Previous work demonstrated that in the absence of a mineral, hydrothermal reaction of cis- and trans-1,2-dimethylcyclohexane is extremely slow and resulted in the formation of many products. However, in the presence of sphalerite (ZnS), the reaction rate is significantly increased and it results in the formation of one main product, the corresponding stereoisomer. Following similar methods, we demonstrated that the sphalerite used in the reaction of cis-1,2-dimethylcyclohexane to the trans- stereoisomer visually changes structure via SEM. Additionally, we ran the experiments in sealed glass tubes, which unlike previously used gold tubes, do not react with the organics and provides more volume for larger amounts of mineral to be used. Finally, we investigated the role of other metal sulfides (FeS and PbS) in organic transformation reactions and analyzed their resulting physical structure. We found the role of FeS catalysis to be ambiguous and that PbS seemed to have no effect in the transformation reactions. We also found the glass tube data using ZnS to track previously published data with the same reactions in gold tubes. Our reactions were run without pressurizing the reaction vessels and at 300°C indicating pressure is not main factor in product formation (compare 1000 bar and 300°C).
ContributorsMchenry, Austin Ryan (Author) / Gould, Ian (Thesis director) / Johnson, Kristin (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05