Matching Items (3)
136294-Thumbnail Image.png
Description
Non-small cell lung cancer (NSCLC) has become the leading cause of cancer-related deaths in the United States with a combined 5-year survival rate of only 16%. Even with advancements in aggressive chemotherapeutics, there has been little improvement in patient survival. LKB1 (liver kinase B1)/STK11 (serine-threonine kinase 11) is a

Non-small cell lung cancer (NSCLC) has become the leading cause of cancer-related deaths in the United States with a combined 5-year survival rate of only 16%. Even with advancements in aggressive chemotherapeutics, there has been little improvement in patient survival. LKB1 (liver kinase B1)/STK11 (serine-threonine kinase 11) is a tumor suppressor gene mutated in ~30% of NSCLC adenocarcinomas and loss of LKB1 is associated with a more aggressive cancer phenotype. In LKB1-deficient NSCLC, we observe significantly elevated expression and secretion of the chemokines CCL2, CCL5, and CCL20, which are involved in macrophage recruitment. Numerous studies have shown that high infiltration of a unique subset of macrophages called tumor-associated macrophages (TAMs) is associated with poor prognosis in patients with various cancers. mTORC1-HIF1-α and NFκB are two pathways that have been shown to regulate chemokine secretion and are often up-regulated in the absence of LKB1. Dosing LKB1-null cell lines with inhibitors of mTOR and NFκB in addition to silencing HIF1-α gene expression demonstrate that NFκB but not mTORC1-HIF1-α signaling may play a role in regulating chemokine secretion in LKB1-deficient NSCLC. Collectively, these results provide insight into the mechanisms responsible for the aggressive phenotype associated with LKB1-deficient non-small cell lung cancer.
ContributorsO'Brien, Kelley Xiao-Fung (Author) / Blattman, Joseph (Thesis director) / Inge, Landon (Committee member) / Friel, Jacqueline (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / School of Life Sciences (Contributor)
Created2015-05
153543-Thumbnail Image.png
Description
The majority of non-small cell lung cancer (NSCLC) patients (70%) are diagnosed with adenocarcinoma versus other histological subtypes. These patients often present with advanced, metastatic disease and frequently relapse after treatment. The tumor suppressor, Liver Kinase B1, is frequently inactivated in adenocarcinomas and loss of function is associated with

The majority of non-small cell lung cancer (NSCLC) patients (70%) are diagnosed with adenocarcinoma versus other histological subtypes. These patients often present with advanced, metastatic disease and frequently relapse after treatment. The tumor suppressor, Liver Kinase B1, is frequently inactivated in adenocarcinomas and loss of function is associated with a highly aggressive, metastatic tumor (1). Identification of the mechanisms deregulated with LKB1 inactivation could yield targeted therapeutic options for adenocarcinoma patients. Re-purposing the immune system to support tumor growth and aid in metastasis has been shown to be a feature in cancer progression (2). Tumor associated macrophages (TAMs) differentiate from monocytes, which are recruited to the tumor microenvironment via secretion of chemotaxic factors by cancer cells. We find that NSCLC cells deficient in LKB1 display increased secretion of C-C motif ligand 2 (CCL2), a chemokine involved in monocyte recruitment. To elucidate the molecular pathway regulating CCL2 up-regulation, we investigated inhibitors of substrates downstream of LKB1 signaling in A549, H23, H2030 and H838 cell lines. Noticeably, BAY-11-7082 (NF-κB inhibitor) reduced CCL2 secretion by an average 92%. We further demonstrate that a CCR2 antagonist and neutralizing CCL2 antibody substantially reduce monocyte migration to NSCLC (H23) cell line conditioned media. Using an in vivo model of NSCLC, we find that LKB1 deleted tumors demonstrate a discernible increase in CCL2 levels compared to normal lung. Moreover, tumors display an increase in the M2:M1 macrophage ratio and increase in tumor associated neutrophil (TAN) infiltrate compared to normal lung. This M2 shift was significantly reduced in mice treated with anti-CCL2 or a CCR2 antagonist and the TAN infiltrate was significantly reduced with the CCR2 antagonist. These data suggest that deregulation of the CCL2/CCR2 signaling axis could play a role in cancer progression in LKB1 deficient tumors.
ContributorsFriel, Jacqueline (Author) / Inge, Landon (Thesis advisor) / Lake, Douglas (Thesis advisor) / Blattman, Joseph (Committee member) / Arizona State University (Publisher)
Created2015
135543-Thumbnail Image.png
Description
Background: Esophageal adenocarcinoma (EAC) is one of the only malignancies whose incidence is rising in the United States. Current multidrug treatment for EAC has considerable toxic side effects that necessitate the development of less toxic, more specific target drugs. Recent large scale genomic analysis reveals that TP53 is the most

Background: Esophageal adenocarcinoma (EAC) is one of the only malignancies whose incidence is rising in the United States. Current multidrug treatment for EAC has considerable toxic side effects that necessitate the development of less toxic, more specific target drugs. Recent large scale genomic analysis reveals that TP53 is the most frequently inactivated gene in EAC. One of the primary functions of TP53 and its gene product, the tumor suppressor p53, is in regulation of DNA repair in response to DNA damage. Inactivation of TP53 results in loss of the G1/S cell cycle checkpoint, and dependence on the G2/M checkpoint for DNA repair. Activity of cyclin-dependent kinase 1 (CDK1) is necessary for cells to exit the G2/M checkpoint and enter mitosis. Phosphorylation of CDK1 by the wee1 kinase inhibits CDK1 in response to DNA damage, allowing cells to maintain G2 arrest and repair the damaged DNA. Active in normal cells, wee1 kinase is critical in cancer cells to promote DNA repair and cell survival in response to DNA damage, particularly from commonly used DNA damaging therapies. AZD1775 is a small molecule inhibitor of wee1 kinase, currently under investigation in clinical trials. AZD1775 differentially targets cancer cells by blocking wee1 mediated inhibition of CDK1 and consequently preventing G2/M arrest in response to DNA damage. Combination of AZD1775 with DNA damaging agents is thought to push cancer cells with damaged DNA through to mitosis and initiate apoptosis instead of G2/M arrest and DNA repair. Based upon the incidence of TP53 mutation in EAC, we hypothesize that treatment with a DNA damaging agent in combination with AZD1775 will be as effective at eliciting DNA damage and cell death as the more toxic current standard of care, which is comprised of treatment with cisplatin, docetaxel, and radiation. Methods: p53 mutant EAC cell lines were dosed with cisplatin, AZD1775, and the combination of cisplatin and AZD1775, and then assayed for viability. Nude mice were implanted with p53 mutant patient derived xenograft esophageal adenocarcinoma tumors and randomized for treatment with AZD1775 alone, cisplatin and AZD1775, radiation and AZD1775, cisplatin, docetaxel, and radiation or vehicle (control). Tumor volume was measured over the five week treatment course. Results: In vitro and in vivo assays reveal a potent synergistic effect between AZD1775 and DNA damaging agents that is as efficacious as the standard of care therapy. The difference in AZD1775 sensitivity among TP53 mutant EAC cell lines indicates that TP53 alone may not be an adequate biomarker to assess for AZD1775- mediated toxicity.
ContributorsBlomquist, Mylan (Author) / Maley, Carlo (Thesis director) / Inge, Landon (Committee member) / Oberle, Eric (Committee member) / College of Letters and Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05