Matching Items (92)
148169-Thumbnail Image.png
Description

This thesis was conducted to study and analyze the fund allocation process adopted by different states in the United States to reduce the impact of the Covid-19 virus. Seven different states and their funding methodologies were compared against the case count within the state. The study also focused on development

This thesis was conducted to study and analyze the fund allocation process adopted by different states in the United States to reduce the impact of the Covid-19 virus. Seven different states and their funding methodologies were compared against the case count within the state. The study also focused on development of a physical distancing index based on three significant attributes. This index was then compared to the expenditure and case counts to support decision making.
A regression model was developed to analyze and compare how different states case counts played out against the regression model and the risk index.

ContributorsJaisinghani, Shaurya (Author) / Mirchandani, Pitu (Thesis director) / Clough, Michael (Committee member) / McCarville, Daniel R. (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Department of Information Systems (Contributor) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

The academic environment has historically been somewhat slow to implement and adopt new technologies. However, developments in video games have created an opportunity for students to learn new skills and topics through nontraditional mediums of education. The disruption caused by the COVID-19 pandemic further highlighted the need for flexible learning

The academic environment has historically been somewhat slow to implement and adopt new technologies. However, developments in video games have created an opportunity for students to learn new skills and topics through nontraditional mediums of education. The disruption caused by the COVID-19 pandemic further highlighted the need for flexible learning opportunities. Joystick Education is our approach to addressing this need. Through online, game-based tutoring and a database of video games with high educational value, Joystick Education creates a learning environment that is effective, fun, and engaging for students. We analyzed popular, mainstream video games for educational content and selected nine games that teach concepts like history, biology, or physics while playing the game. Through promotion on social media, we generated buzz around our website which led to 103 unique visitors over our first month online and two customers requesting to book our tutoring service. We are confident that given more time to grow, Joystick Education can generate profit and become a successful business.

ContributorsBarrong, Tanner Allen (Co-author) / Bartels, Parker (Co-author) / VanLue, Aleczander (Co-author) / Byrne, Jared (Thesis director) / Pierce, John (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor, Contributor) / Industrial, Systems & Operations Engineering Prgm (Contributor, Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147806-Thumbnail Image.png
Description

The product our team is commercializing is a NASA designed technology designed to store waste in space. This product works on Earth as well and has applicable multi-use capabilities. Throughout the last several months, the team has identified different markets to determine which of them would experience the most value

The product our team is commercializing is a NASA designed technology designed to store waste in space. This product works on Earth as well and has applicable multi-use capabilities. Throughout the last several months, the team has identified different markets to determine which of them would experience the most value from this product. The team conducted 25 interviews to grasp the landscape of the different markets related to this product. After a thorough analysis, it was found that vendors who support the disposal of different types of waste and sludge would be the best fit for this product. Vendors like Waste Management, Sharps, Stericycle, Sludge USA, etc.,” have large contracts with hospitals, biotech firms, labs, and cities to manage a wide spectrum of waste. The companies bring value to their clients by making a difficult process easier. However, the process is not seamless and, with certain types of waste, there are significant costs associated with not following an exact process. Throughout this process and interviews with companies like Sludge USA and Waste Management, the team identified a niche market in supporting sludge processes. Caked: Sludge Management is designed to bring value to this market by making their waste disposal process seamless, and saving these institutions significant costs in the long run, while creating additional value.

ContributorsShapiro, Dylan Michael (Co-author) / Brinson, Stacy (Co-author) / Byrne, Jared (Thesis director) / Patel, Manish (Committee member) / Sebold, Brent (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor, Contributor) / Industrial, Systems & Operations Engineering Prgm (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

The purpose of this study is to create and establish an efficient and cost-effective solution to decrease the effects of sedentarism in pregnant women. Our team was given a propelling question, from which we had to narrow down our scope and conduct primary and secondary research to determine our ideal

The purpose of this study is to create and establish an efficient and cost-effective solution to decrease the effects of sedentarism in pregnant women. Our team was given a propelling question, from which we had to narrow down our scope and conduct primary and secondary research to determine our ideal customers. The design of our study intends to imitate the development of a startup where ideas are created from scratch and the final deliverable is a business model plan that shows some sort of traction. Our first major finding is that a sedentary lifestyle can be treated without major challenges in low-risk pregnancies. We determined that uncertainty and lack of concise and clear information is one of the main causes of an increased level of sedentary behavior in low-risk pregnancies. A significant driver for women to do some sort of activity or exercise stems from feeling supported, which doesn’t necessarily come from their partner or couple, but instead from other women that are going to a similar process as them. There are apps in the market that intend to serve pregnant women; however, there is not one that incorporates a social aspect to achieve their goal. In conclusion, there is opportunity in the market for a socially integrated pregnancy fitness app. The Gleam concept has been consciously developed to decrease sedentary behavior through concise, clear, and reliable information and by encouraging women through a socialization platform.

ContributorsFlores, Valeria Nicole (Co-author) / Mosier, Jacob (Co-author) / McCreary, Liam (Co-author) / Byrne, Jared (Thesis director) / Hall, Rick (Committee member) / Silverstein, Taylor (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148215-Thumbnail Image.png
Description

Time studies are an effective tool to analyze current production systems and propose improvements. The problem that motivated the project was that conducting time studies and observing the progression of components across the factory floor is a manual process. Four Industrial Engineering students worked with a manufacturing company to develo

Time studies are an effective tool to analyze current production systems and propose improvements. The problem that motivated the project was that conducting time studies and observing the progression of components across the factory floor is a manual process. Four Industrial Engineering students worked with a manufacturing company to develop Computer Vision technology that would automate the data collection process for time studies. The team worked in an Agile environment to complete over 120 classification sets, create 8 strategy documents, and utilize Root Cause Analysis techniques to audit and validate the performance of the trained Computer Vision data models. In the future, there is an opportunity to continue developing this product and expand the team’s work scope to apply more engineering skills on the data collected to drive factory improvements.

ContributorsJohnson, Katelyn Rose (Co-author) / Martz, Emma (Co-author) / Chmelnik, Nathan (Co-author) / de Guzman, Lorenzo (Co-author) / Ju, Feng (Thesis director) / Courter, Brandon (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor, Contributor) / Industrial, Systems & Operations Engineering Prgm (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148216-Thumbnail Image.png
Description

Time studies are an effective tool to analyze current production systems and propose improvements. The problem that motivated the project was that conducting time studies and observing the progression of components across the factory floor is a manual process. Four Industrial Engineering students worked with a manufacturing company to develo

Time studies are an effective tool to analyze current production systems and propose improvements. The problem that motivated the project was that conducting time studies and observing the progression of components across the factory floor is a manual process. Four Industrial Engineering students worked with a manufacturing company to develop Computer Vision technology that would automate the data collection process for time studies. The team worked in an Agile environment to complete over 120 classification sets, create 8 strategy documents, and utilize Root Cause Analysis techniques to audit and validate the performance of the trained Computer Vision data models. In the future, there is an opportunity to continue developing this product and expand the team’s work scope to apply more engineering skills on the data collected to drive factory improvements.

ContributorsChmelnik, Nathan (Co-author) / de Guzman, Lorenzo (Co-author) / Johnson, Katelyn (Co-author) / Martz, Emma (Co-author) / Ju, Feng (Thesis director) / Courter, Brandon (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor, Contributor) / Industrial, Systems & Operations Engineering Prgm (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
149092-Thumbnail Image.png
Description

The ASU COVID-19 testing lab process was developed to operate as the primary testing site for all ASU staff, students, and specified external individuals. Tests are collected at various collection sites, including a walk-in site at the SDFC and various drive-up sites on campus; analysis is conducted on ASU campus

The ASU COVID-19 testing lab process was developed to operate as the primary testing site for all ASU staff, students, and specified external individuals. Tests are collected at various collection sites, including a walk-in site at the SDFC and various drive-up sites on campus; analysis is conducted on ASU campus and results are distributed virtually to all patients via the Health Services patient portal. The following is a literature review on past implementations of various process improvement techniques and how they can be applied to the ABCTL testing process to achieve laboratory goals. (abstract)

ContributorsKrell, Abby Elizabeth (Co-author) / Bruner, Ashley (Co-author) / Ramesh, Frankincense (Co-author) / Lewis, Gabriel (Co-author) / Barwey, Ishna (Co-author) / Myers, Jack (Co-author) / Hymer, William (Co-author) / Reagan, Sage (Co-author) / Compton, Carolyn (Thesis director) / McCarville, Daniel R. (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
151633-Thumbnail Image.png
Description
In this dissertation, an innovative framework for designing a multi-product integrated supply chain network is proposed. Multiple products are shipped from production facilities to retailers through a network of Distribution Centers (DCs). Each retailer has an independent, random demand for multiple products. The particular problem considered in this study also

In this dissertation, an innovative framework for designing a multi-product integrated supply chain network is proposed. Multiple products are shipped from production facilities to retailers through a network of Distribution Centers (DCs). Each retailer has an independent, random demand for multiple products. The particular problem considered in this study also involves mixed-product transshipments between DCs with multiple truck size selection and routing delivery to retailers. Optimally solving such an integrated problem is in general not easy due to its combinatorial nature, especially when transshipments and routing are involved. In order to find out a good solution effectively, a two-phase solution methodology is derived: Phase I solves an integer programming model which includes all the constraints in the original model except that the routings are simplified to direct shipments by using estimated routing cost parameters. Then Phase II model solves the lower level inventory routing problem for each opened DC and its assigned retailers. The accuracy of the estimated routing cost and the effectiveness of the two-phase solution methodology are evaluated, the computational performance is found to be promising. The problem is able to be heuristically solved within a reasonable time frame for a broad range of problem sizes (one hour for the instance of 200 retailers). In addition, a model is generated for a similar network design problem considering direct shipment and consolidation within the same product set opportunities. A genetic algorithm and a specific problem heuristic are designed, tested and compared on several realistic scenarios.
ContributorsXia, Mingjun (Author) / Askin, Ronald (Thesis advisor) / Mirchandani, Pitu (Committee member) / Zhang, Muhong (Committee member) / Kierstead, Henry (Committee member) / Arizona State University (Publisher)
Created2013
151341-Thumbnail Image.png
Description
With the rapid development of mobile sensing technologies like GPS, RFID, sensors in smartphones, etc., capturing position data in the form of trajectories has become easy. Moving object trajectory analysis is a growing area of interest these days owing to its applications in various domains such as marketing, security, traffic

With the rapid development of mobile sensing technologies like GPS, RFID, sensors in smartphones, etc., capturing position data in the form of trajectories has become easy. Moving object trajectory analysis is a growing area of interest these days owing to its applications in various domains such as marketing, security, traffic monitoring and management, etc. To better understand movement behaviors from the raw mobility data, this doctoral work provides analytic models for analyzing trajectory data. As a first contribution, a model is developed to detect changes in trajectories with time. If the taxis moving in a city are viewed as sensors that provide real time information of the traffic in the city, a change in these trajectories with time can reveal that the road network has changed. To detect changes, trajectories are modeled with a Hidden Markov Model (HMM). A modified training algorithm, for parameter estimation in HMM, called m-BaumWelch, is used to develop likelihood estimates under assumed changes and used to detect changes in trajectory data with time. Data from vehicles are used to test the method for change detection. Secondly, sequential pattern mining is used to develop a model to detect changes in frequent patterns occurring in trajectory data. The aim is to answer two questions: Are the frequent patterns still frequent in the new data? If they are frequent, has the time interval distribution in the pattern changed? Two different approaches are considered for change detection, frequency-based approach and distribution-based approach. The methods are illustrated with vehicle trajectory data. Finally, a model is developed for clustering and outlier detection in semantic trajectories. A challenge with clustering semantic trajectories is that both numeric and categorical attributes are present. Another problem to be addressed while clustering is that trajectories can be of different lengths and also have missing values. A tree-based ensemble is used to address these problems. The approach is extended to outlier detection in semantic trajectories.
ContributorsKondaveeti, Anirudh (Author) / Runger, George C. (Thesis advisor) / Mirchandani, Pitu (Committee member) / Pan, Rong (Committee member) / Maciejewski, Ross (Committee member) / Arizona State University (Publisher)
Created2012
152033-Thumbnail Image.png
Description
The main objective of this research is to develop an integrated method to study emergent behavior and consequences of evolution and adaptation in engineered complex adaptive systems (ECASs). A multi-layer conceptual framework and modeling approach including behavioral and structural aspects is provided to describe the structure of a class of

The main objective of this research is to develop an integrated method to study emergent behavior and consequences of evolution and adaptation in engineered complex adaptive systems (ECASs). A multi-layer conceptual framework and modeling approach including behavioral and structural aspects is provided to describe the structure of a class of engineered complex systems and predict their future adaptive patterns. The approach allows the examination of complexity in the structure and the behavior of components as a result of their connections and in relation to their environment. This research describes and uses the major differences of natural complex adaptive systems (CASs) with artificial/engineered CASs to build a framework and platform for ECAS. While this framework focuses on the critical factors of an engineered system, it also enables one to synthetically employ engineering and mathematical models to analyze and measure complexity in such systems. In this way concepts of complex systems science are adapted to management science and system of systems engineering. In particular an integrated consumer-based optimization and agent-based modeling (ABM) platform is presented that enables managers to predict and partially control patterns of behaviors in ECASs. Demonstrated on the U.S. electricity markets, ABM is integrated with normative and subjective decision behavior recommended by the U.S. Department of Energy (DOE) and Federal Energy Regulatory Commission (FERC). The approach integrates social networks, social science, complexity theory, and diffusion theory. Furthermore, it has unique and significant contribution in exploring and representing concrete managerial insights for ECASs and offering new optimized actions and modeling paradigms in agent-based simulation.
ContributorsHaghnevis, Moeed (Author) / Askin, Ronald G. (Thesis advisor) / Armbruster, Dieter (Thesis advisor) / Mirchandani, Pitu (Committee member) / Wu, Tong (Committee member) / Hedman, Kory (Committee member) / Arizona State University (Publisher)
Created2013