Matching Items (26)
Filtering by

Clear all filters

147931-Thumbnail Image.png
Description

This analysis explores what the time needed to harden, and time needed to degrade is of a PLGA bead, as well as whether the size of the needle injecting the bead and the addition of a drug (Vismodegib) may affect these variables. Polymer degradation and hardening are critical to understand

This analysis explores what the time needed to harden, and time needed to degrade is of a PLGA bead, as well as whether the size of the needle injecting the bead and the addition of a drug (Vismodegib) may affect these variables. Polymer degradation and hardening are critical to understand for the polymer’s use in clinical settings, as these factors help determine the patients’ and healthcare providers’ use of the drug and estimated treatment time. Based on the literature, it is expected that the natural logarithmic polymer mass degradation forms a linear relationship to time. Polymer hardening was tested by taking video recordings of gelatin plates as they are injected with microneedles and performing RGB analysis on the polymer “beads” created. Our results for the polymer degradation experiments showed that the polymer hardened for all solutions and trials within approximately 1 minute, presenting a small amount of time in which the patient would have to remain motionless in the affected area. Both polymer bead size and drug concentration may have had a modest impact on the hardening time experiments, while bead size may affect the time required for the polymer to degrade. Based on the results, the polymer degradation is expected to last multiple weeks, which may allow for the polymer to be used as a long-term drug delivery system in treatment of basal cell carcinoma.

ContributorsEltze, Maren Caterina (Author) / Vernon, Brent (Thesis director) / Buneo, Christopher (Committee member) / Harrington Bioengineering Program (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

The goal of this research project is to create a Mathcad template file capable of statistically modelling the effects of mean and standard deviation on a microparticle batch characterized by the log normal distribution model. Such a file can be applied during manufacturing to explore tolerances and increase cost and

The goal of this research project is to create a Mathcad template file capable of statistically modelling the effects of mean and standard deviation on a microparticle batch characterized by the log normal distribution model. Such a file can be applied during manufacturing to explore tolerances and increase cost and time effectiveness. Theoretical data for the time to 60% drug release and the slope and intercept of the log-log plot were collected and subjected to statistical analysis in JMP. Since the scope of this project focuses on microparticle surface degradation drug release with no drug diffusion, the characteristic variables relating to the slope (n = diffusional release exponent) and the intercept (k = kinetic constant) do not directly apply to the distribution model within the scope of the research. However, these variables are useful for analysis when the Mathcad template is applied to other types of drug release models.

ContributorsHan, Priscilla (Author) / Vernon, Brent (Thesis director) / Nickle, Jacob (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148502-Thumbnail Image.png
Description

Pelvic Circumferential Compression Devices (PCCDs), an important medical device when caring for patients with pelvic fractures, play a crucial role in the stabilization and reduction of the fracture. During pelvic fracture cases, control of internal bleeding through access to the femoral artery is of utmost importance. Current designs of PCCDs

Pelvic Circumferential Compression Devices (PCCDs), an important medical device when caring for patients with pelvic fractures, play a crucial role in the stabilization and reduction of the fracture. During pelvic fracture cases, control of internal bleeding through access to the femoral artery is of utmost importance. Current designs of PCCDs do not allow vital access to this artery and in attempts to gain access, medical professionals and emergency care providers choose to cut into the PCCDs or place them in suboptimal positions with unknown downstream effects. We researched the effects on surface pressure and the overall pressure distribution created by the PCCDs when they are modified or placed incorrectly on the patient. In addition, we investigated the effects of those misuses on pelvic fracture reduction, a key parameter in stabilizing the patient during critical care. We hypothesized that incorrectly placing or modifying the PCCD will result in increased surface pressure and decreased fracture reduction. Our mannequin studies show that for SAM Sling and T-POD, surface pressure increases if a PCCD is incorrectly placed or modified, in support of our hypothesis. However, opposite results occurred for the Pelvic Binder, where the correctly placed PCCD had higher surface pressure when compared to the incorrectly placed or modified PCCD. Additionally, pressure distribution was significantly affected by the modification of the PCCDs. The cadaver lab measurements show that modifying or incorrectly placing the PCCDs significantly limits their ability to reduce the pelvic fracture. These results suggest that while modifying or incorrectly placing PCCDs allows access to the femoral artery, there are potentially dangerous effects to the patient including increased surface pressures and limited fracture reduction.

ContributorsConley, Ian Patrick (Co-author) / Ryder, Madison (Co-author) / Vernon, Brent (Thesis director) / Bogert, James (Committee member) / Harrington Bioengineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
136943-Thumbnail Image.png
Description
Cerebral aneurysms, also known as intracranial aneurysms, are sac-like lesions in the arteries of the brain that can rupture to cause subarachnoid hemorrhaging, damaging and killing brain cells. Metal coil embolization has been traditionally used to occlude and treat cerebral aneurysms to limited success, but polymer embolization has been suggested,

Cerebral aneurysms, also known as intracranial aneurysms, are sac-like lesions in the arteries of the brain that can rupture to cause subarachnoid hemorrhaging, damaging and killing brain cells. Metal coil embolization has been traditionally used to occlude and treat cerebral aneurysms to limited success, but polymer embolization has been suggested, because it can provide a greater fraction of occlusion. One such polymer with low cytotoxicity is poly(propylene glycol)diacrylate (PPODA) crosslinked via Michael-type addition with pentaerythritol tetrakis(3-mercaptopropionate) (QT). This study was performed to examine the behavior of PPODA-QT gel in vitro under pulsatile flow emulating physiological conditions. An idealized cerebral aneurysm flow model was designed based on geometries associated with an increase in rupture risk. Pressure was monitored at the apex of the aneurysm dome for varied flow rates and polymer filling fractions of 32.4, 78.2, and 100%. The results indicate that the amount of PPODA-QT deployed into the aneurysm decreases the peak-to-peak oscillation in pressure at the aneurysm wall by an inverse proportion. The 32.4 and 78.2% treatments did not significantly decrease the mean pressure applied to the aneurysm dome, but the 100% treatment greatly reduced it by diverting flow. This study indicates that the maximum filling fraction after swelling of PPODA-QT polymer should be deployed into the aneurysmal sac for treatment.
ContributorsWorkman, Christopher David (Author) / Vernon, Brent (Thesis director) / Frakes, David (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
137683-Thumbnail Image.png
Description
Rupture of intracranial aneurysms causes a subarachnoid hemorrhage, which is often lethal health event. A minimally invasive method of solving this problem may involve a material, which can be administered as a liquid and then becomes a strong solid within minutes preventing flow of blood in the aneurysm. Here we

Rupture of intracranial aneurysms causes a subarachnoid hemorrhage, which is often lethal health event. A minimally invasive method of solving this problem may involve a material, which can be administered as a liquid and then becomes a strong solid within minutes preventing flow of blood in the aneurysm. Here we report on the development of temperature responsive copolymers, which are deliverable through a microcatheter at body temperature and then rapidly cure to form a highly elastic hydrogel. To our knowledge, this is the first physical-and chemical-crosslinked hydrogel capable of rapid crosslinking at temperatures above the gel transition temperature. The polymer system, poly(N-isopropylacrylamide-co-cysteamine-co-Jeffamine® M-1000 acrylamide) and poly(ethylene glycol) diacrylate, was evaluated in wide-neck aneurysm flow models to evaluate the stability of the hydrogels. Investigation of this polymer system indicates that the Jeffamine® M-1000 causes the gels to retain water, resulting in gels that are initially weak and viscous, but become stronger and more elastic after chemical crosslinking.
ContributorsLee, Elizabeth Jean (Author) / Vernon, Brent (Thesis director) / Brennecka, Celeste (Committee member) / Overstreet, Derek (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2013-05
137550-Thumbnail Image.png
Description
This report provides information concerning qualities of methylcellulose and how those properties affect further experimentation within the biomedical world. Utilizing the compound’s biocompatibility many issues, ranging from surgical to cosmetic, can be solved. As of recent, studies indicate, methylcellulose has been used as a physically cross-linked gel, which

This report provides information concerning qualities of methylcellulose and how those properties affect further experimentation within the biomedical world. Utilizing the compound’s biocompatibility many issues, ranging from surgical to cosmetic, can be solved. As of recent, studies indicate, methylcellulose has been used as a physically cross-linked gel, which cannot sustain a solid form within the body. Therefore, this report will ultimately explore the means of creating a non-degradable, injectable, chemically cross-linking methylcellulose- based hydrogel. Methylcellulose will be evaluated and altered in experiments conducted within this report and a chemical cross-linker, developed from Jeffamine ED 2003 (O,O′-Bis(2-aminopropyl) polypropylene glycol-block-polyethylene glycol-block-polypropylene glycol), will be created. Experimentation with these elements is outlined here, and will ultimately prompt future revisions and analysis.
ContributorsBundalo, Zoran Luka (Author) / Vernon, Brent (Thesis director) / LaBelle, Jeffrey (Committee member) / Overstreet, Derek (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05
137564-Thumbnail Image.png
Description
Revision hip procedures represent a large financial burden on hospitals and the problem will continue to worsen as the baby boomer generation ages and life expectancy goes up. The future problem is a complex issue that bridges scientific and anecdotal evidence and must be solved. A review of the current

Revision hip procedures represent a large financial burden on hospitals and the problem will continue to worsen as the baby boomer generation ages and life expectancy goes up. The future problem is a complex issue that bridges scientific and anecdotal evidence and must be solved. A review of the current total hip arthroplasty procedure in regards to the physical properties of the materials used for hip prostheses is given. Revision procedures can be caused by infection or basic wear and tear from the stress that that implant is subjected to daily. Infections on these implants often present themselves as medical biofilms. The mechanisms of biofilm formation include a complex system of enzymes that work to initiate a phenotypic response based on an established quorum sensing within the colony of bacteria. Surgical methods to treat infection include irrigation and debridement as well as loading drug cement spacers with antimicrobial in hopes of delivering the antibiotic locally. Research is being done to better model the transport of drug through the tissue surrounding the implant, and will hopefully one day be available for use in individual patients.
ContributorsMcDermand, Matthew Paul (Author) / Caplan, Michael (Thesis director) / Vernon, Brent (Committee member) / McLemore, Ryan (Committee member) / Barrett, The Honors College (Contributor)
Created2013-05
148276-Thumbnail Image.png
Description

Polymer drug delivery system offers a key to a glaring issue in modern administration routes of drugs and biologics. Poly(lactic-co-glycolic acid) (PLGA) can be used to encapsulate drugs and biologics and deliver them into the patient, which allows high local concentration (compared to current treatment methods), protection of the cargo

Polymer drug delivery system offers a key to a glaring issue in modern administration routes of drugs and biologics. Poly(lactic-co-glycolic acid) (PLGA) can be used to encapsulate drugs and biologics and deliver them into the patient, which allows high local concentration (compared to current treatment methods), protection of the cargo from the bodily environment, and reduction in systemic side effects. This experiment used a single emulsion technique to encapsulate L-tyrosine in PLGA microparticles and UV spectrophotometry to analyze the drug release over a period of one week. The release assay found that for the tested samples, the released amount is distinct initially, but is about the same after 4 days, and they generally follow the same normalized percent released pattern. The experiment could continue with testing more samples, test the same samples for a longer duration, and look into higher w/w concentrations such as 20% or 50%.

ContributorsSeo, Jinpyo (Author) / Vernon, Brent (Thesis director) / Pal, Amrita (Committee member) / Dean, W.P. Carey School of Business (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148501-Thumbnail Image.png
Description

Pelvic Circumferential Compression Devices (PCCDs), an important medical device when caring for patients with pelvic fractures, play a crucial role in the stabilization and reduction of the fracture. During pelvic fracture cases, control of internal bleeding through access to the femoral artery is of utmost importance. Current designs of PCCDs

Pelvic Circumferential Compression Devices (PCCDs), an important medical device when caring for patients with pelvic fractures, play a crucial role in the stabilization and reduction of the fracture. During pelvic fracture cases, control of internal bleeding through access to the femoral artery is of utmost importance. Current designs of PCCDs do not allow vital access to this artery and in attempts to gain access, medical professionals and emergency care providers choose to cut into the PCCDs or place them in suboptimal positions with unknown downstream effects. We researched the effects on surface pressure and the overall pressure distribution created by the PCCDs when they are modified or placed incorrectly on the patient. In addition, we investigated the effects of those misuses on pelvic fracture reduction, a key parameter in stabilizing the patient during critical care. We hypothesized that incorrectly placing or modifying the PCCD will result in increased surface pressure and decreased fracture reduction. Our mannequin studies show that for SAM Sling and T-POD, surface pressure increases if a PCCD is incorrectly placed or modified, in support of our hypothesis. However, opposite results occurred for the Pelvic Binder, where the correctly placed PCCD had higher surface pressure when compared to the incorrectly placed or modified PCCD. Additionally, pressure distribution was significantly affected by the modification of the PCCDs. The cadaver lab measurements show that modifying or incorrectly placing the PCCDs significantly limits their ability to reduce the pelvic fracture. These results suggest that while modifying or incorrectly placing PCCDs allows access to the femoral artery, there are potentially dangerous effects to the patient including increased surface pressures and limited fracture reduction.

ContributorsRyder, Madison Taylor (Co-author) / Conley, Ian (Co-author) / Vernon, Brent (Thesis director) / Bogert, James (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description
In terms of overall athleticism, other than the obvious extremities that take on more skillful duties in performance (arms, legs, fingers ie.), the back, specifically lower, is pivotal in athletic movement. The main bolstering force in the lower back is the lumbar vertebrae, which on the upper end are connected

In terms of overall athleticism, other than the obvious extremities that take on more skillful duties in performance (arms, legs, fingers ie.), the back, specifically lower, is pivotal in athletic movement. The main bolstering force in the lower back is the lumbar vertebrae, which on the upper end are connected to the thoracic portion of the spine, and on the lower end transform into the various processes of the sacrum. The lower back is highly involved in bending and stabilizing during athletic movement, while also being favorably responsible for not only producing but absorbing force as well. Men’s Football has the highest rate of occurrence in injuries compared to all other collegiate sports (Hassebrock 2019). This is a product of the various specificities of the game of football such as groundbreaking speed and strength, along with some psychological group-centered constructs. In survey findings, 83% healthcare professionals say that the best active treatment plan is strengthening the core muscles. While in terms of natural and technological treatments like acupuncture, contrast immersion, and electrical stimulation, there wasn’t a definitive methodology proven to be superior to the others. Allowing for the healthcare professional to be creative in their combination of treatments, as long as core strengthening is primarily targeted.
ContributorsWilliams, Kyle Ellis (Author) / Vernon, Brent (Thesis director) / Chhabra, Anikar (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05