Matching Items (18)
172995-Thumbnail Image.png
Description

Franklin William Stahl studied DNA replication, bacteriophages, and genetic recombination in the US during the mid-twentieth and early twenty-first centuries. With his colleague Matthew Meselson, Stahl performed an experiment called the Meselson-Stahl experiment, which provided evidence for a process called semi-conservative DNA replication. Semi-conservative replication is a process in which

Franklin William Stahl studied DNA replication, bacteriophages, and genetic recombination in the US during the mid-twentieth and early twenty-first centuries. With his colleague Matthew Meselson, Stahl performed an experiment called the Meselson-Stahl experiment, which provided evidence for a process called semi-conservative DNA replication. Semi-conservative replication is a process in which each strand of a parental DNA double helix serves as a template for newly replicated daughter strands, so that one parental strand is conserved in every daughter double helix. Those findings supported the Watson-Crick Model for DNA replication proposed in 1953 by James Watson and Francis Crick, convincing many biologists about DNA’s structure and replication in the 1950s. Stahl’s genetics research, especially that of DNA replication, showed researchers how genetic information is distributed within a cell and is passed down from cell to cell.

Created2017-07-20
Description

On 6 May 1952, at King’s College London in London, England, Rosalind Franklin photographed her fifty-first X-ray diffraction pattern of deoxyribosenucleic acid, or DNA. Photograph 51, or Photo 51, revealed information about DNA’s three-dimensional structure by displaying the way a beam of X-rays scattered off a pure fiber of DNA.

On 6 May 1952, at King’s College London in London, England, Rosalind Franklin photographed her fifty-first X-ray diffraction pattern of deoxyribosenucleic acid, or DNA. Photograph 51, or Photo 51, revealed information about DNA’s three-dimensional structure by displaying the way a beam of X-rays scattered off a pure fiber of DNA. Franklin took Photo 51 after scientists confirmed that DNA contained genes. Maurice Wilkins, Franklin’s colleague showed James and Francis Crick Photo 51 without Franklin’s knowledge. Watson and Crick used that image to develop their structural model of DNA. In 1962, after Franklin’s death, Watson, Crick, and Wilkins shared the Nobel Prize in Physiology or Medicine for their findings about DNA. Franklin’s Photo 51 helped scientists learn more about the three-dimensional structure of DNA and enabled scientists to understand DNA’s role in heredity.

Created2019-12-30
172977-Thumbnail Image.png
Description

In May 1953, scientists James Watson and Francis Crick wrote the article “Genetical Implications of the Structure of Deoxyribonucleic Acid,” hereafter “Genetical Implications,” which was published in the journal Nature. In “Genetical Implications,” Watson and Crick suggest a possible explanation for deoxyribonucleic acid, or DNA, replication based on a structure

In May 1953, scientists James Watson and Francis Crick wrote the article “Genetical Implications of the Structure of Deoxyribonucleic Acid,” hereafter “Genetical Implications,” which was published in the journal Nature. In “Genetical Implications,” Watson and Crick suggest a possible explanation for deoxyribonucleic acid, or DNA, replication based on a structure of DNA they proposed prior to writing “Genetical Implications.” Watson and Crick proposed their theory about DNA replication at a time when scientists had recently reached the consensus that DNA contained genes, which scientists understood to carry information that determines an organism’s identity. Watson and Crick’s replication mechanism as presented in “Genetical Implications” contributed to the two scientists sharing a portion of the 1962 Nobel Prize in Physiology or Medicine. With their suggested DNA replication mechanism in “Genetical Implications,” Watson and Crick explained how genes are copied and passed along to new cells and organisms, thereby explaining how the information contained within genes is preserved through generations.

Created2020-01-13
172980-Thumbnail Image.png
Description

In April 1953, Rosalind Franklin and Raymond Gosling, published “Molecular Configuration in Sodium Thymonucleate,” in the scientific journal Nature. The article contained Franklin and Gosling’s analysis of their X-ray diffraction pattern of thymonucleate or deoxyribonucleic acid, known as DNA. In the early 1950s, scientists confirmed that genes, the heritable factors

In April 1953, Rosalind Franklin and Raymond Gosling, published “Molecular Configuration in Sodium Thymonucleate,” in the scientific journal Nature. The article contained Franklin and Gosling’s analysis of their X-ray diffraction pattern of thymonucleate or deoxyribonucleic acid, known as DNA. In the early 1950s, scientists confirmed that genes, the heritable factors that control how organisms develop, contained DNA. However, at the time scientists had not determined how DNA functioned or its three-dimensional structure. In their 1953 paper, Franklin and Gosling interpret X-ray diffraction patterns of DNA fibers that they collected, which show the scattering of X-rays from the fibers. The patterns provided information about the three-dimensional structure of the molecule. “Molecular Configuration in Sodium Thymonucleate” shows the progress Franklin and Gosling made toward understanding the three-dimensional structure of DNA.

Created2019-11-30
172914-Thumbnail Image.png
Description

During the twentieth century in the United States, Alfred Day Hershey studied phages, or viruses that infect bacteria, and experimentally verified that genes were made of deoxyribonucleic acid, or DNA. Genes are molecular, heritable instructions for how an organism develops. When Hershey started to study phages, scientists did not know

During the twentieth century in the United States, Alfred Day Hershey studied phages, or viruses that infect bacteria, and experimentally verified that genes were made of deoxyribonucleic acid, or DNA. Genes are molecular, heritable instructions for how an organism develops. When Hershey started to study phages, scientists did not know if phages contained genes, or whether genes were made of DNA or protein. In 1952, Hershey and his research assistant, Martha Chase, conducted phage experiments that convinced scientists that genes were made of DNA. For his work with phages, Hershey shared the 1969 Nobel Prize in Physiology or Medicine with Max Delbrück and Salvador Luria. Hershey conducted experiments with results that connected DNA to the function of genes, thereby changing the way scientists studied molecular biology and the development of organisms.

Created2019-04-29
172938-Thumbnail Image.png
Description

In 2001, Yale University Press published Frederic Lawrence Holmes' book, Meselson, Stahl, and the Replication of DNA: A History of "The Most Beautiful Experiment in Biology" (Replication of DNA), which chronicles the 1950s debate about how DNA replicates. That experiment verified that DNA replicates semi-conservatively as originally proposed by Watson

In 2001, Yale University Press published Frederic Lawrence Holmes' book, Meselson, Stahl, and the Replication of DNA: A History of "The Most Beautiful Experiment in Biology" (Replication of DNA), which chronicles the 1950s debate about how DNA replicates. That experiment verified that DNA replicates semi-conservatively as originally proposed by Watson and Crick. Rather than focusing solely on experiments and findings, Holmes's book presents the investigative processes of scientists studying DNA replication. Based on personal accounts, letter correspondence, and preserved research documents, Replication of DNA serves as a detailed account of the initial issues surrounding DNA replication and the Meselson-Stahl experiment from a scientist's perspective.

Created2017-07-23
173243-Thumbnail Image.png
Description

In February 1953, Linus Pauling and Robert Brainard Corey, two scientists working at the California Institute of Technology in Pasadena, California, proposed a structure for deoxyribonucleic acid, or DNA, in their article “A Proposed Structure for the Nucleic Acids,” henceforth “Nucleic Acids.” In the article, Pauling and Corey suggest a

In February 1953, Linus Pauling and Robert Brainard Corey, two scientists working at the California Institute of Technology in Pasadena, California, proposed a structure for deoxyribonucleic acid, or DNA, in their article “A Proposed Structure for the Nucleic Acids,” henceforth “Nucleic Acids.” In the article, Pauling and Corey suggest a model for nucleic acids, including DNA, that consisted of three nucleic acid strands wound together in a triple helix. “Nucleic Acids” was published in Proceedings of the National Academy of Sciences shortly after scientists came to the consensus that genes, the biological factors that control how organisms develop, contained DNA. Though scientists proved Pauling and Corey’s model incorrect, “Nucleic Acids” helped scientists understand DNA’s structure and function as genetic material.

Created2019-08-26
173199-Thumbnail Image.png
Description

In 1944, Oswald Avery, Colin MacLeod, and Maclyn McCarty published an article in which they concluded that genes, or molecules that dictate how organisms develop, are made of deoxyribonucleic acid, or DNA. The article is titled “Studies on the Chemical Nature of the Substance Inducing Transformation of Pneumococcal Types: Induction

In 1944, Oswald Avery, Colin MacLeod, and Maclyn McCarty published an article in which they concluded that genes, or molecules that dictate how organisms develop, are made of deoxyribonucleic acid, or DNA. The article is titled “Studies on the Chemical Nature of the Substance Inducing Transformation of Pneumococcal Types: Induction of Transformation by a Desoxyribonucleic Acid Fraction Isolated from Pneumococcus Type III,” hereafter “Transformation.” The authors isolated, purified, and characterized genes within bacteria and found evidence that those genes were made of DNA and not protein. Though scientists were initially skeptical that genes were made of DNA, they later recognized that the data reported in “Transformation” were clear evidence that DNA was genetic material, a revelation that furthered research about how organisms grow, develop, and pass on traits to offspring.

Created2019-07-08
173265-Thumbnail Image.png
Description

In 1951 and 1952, Alfred Hershey and Martha Chase conducted a series of experiments at the Carnegie Institute of Washington in Cold Spring Harbor, New York, that verified genes were made of deoxyribonucleic acid, or DNA. Hershey and Chase performed their experiments, later named the Hershey-Chase experiments, on viruses that

In 1951 and 1952, Alfred Hershey and Martha Chase conducted a series of experiments at the Carnegie Institute of Washington in Cold Spring Harbor, New York, that verified genes were made of deoxyribonucleic acid, or DNA. Hershey and Chase performed their experiments, later named the Hershey-Chase experiments, on viruses that infect bacteria, also called bacteriophages. The experiments followed decades of scientists’ skepticism about whether genetic material was composed of protein or DNA. The most well-known Hershey-Chase experiment, called the Waring Blender experiment, provided concrete evidence that genes were made of DNA. The Hershey-Chase experiments settled the long-standing debate about the composition of genes, thereby allowing scientists to investigate the molecular mechanisms by which genes function in organisms.

Created2019-06-23
173278-Thumbnail Image.png
Description

Max Ludwig Henning Delbrick applied his knowledge of theoretical physics to biological systems such as bacterial viruses called bacteriophages, or phages, and gene replication during the twentieth century in Germany and the US. Delbrück demonstrated that bacteria undergo random genetic mutations to resist phage infections. Those findings linked bacterial genetics

Max Ludwig Henning Delbrick applied his knowledge of theoretical physics to biological systems such as bacterial viruses called bacteriophages, or phages, and gene replication during the twentieth century in Germany and the US. Delbrück demonstrated that bacteria undergo random genetic mutations to resist phage infections. Those findings linked bacterial genetics to the genetics of higher organisms. In the mid-twentieth century, Delbrück helped start the Phage Group and Phage Course in the US, which further organized phage research. Delbrück also contributed to the DNA replication debate that culminated in the 1958 Meselson-Stahl experiment, which demonstrated how organisms replicate their genetic information. For his work with phages, Delbrück earned part of the 1969 Nobel Prize for Physiology or Medicine. Delbrück's work helped shape and establish new fields in molecular biology and genetics to investigate the laws of inheritance and development.

Created2017-09-20