Matching Items (99)
150056-Thumbnail Image.png
Description
Bioparticles comprise a diverse amount of materials ubiquitously present in nature. From proteins to aerosolized biological debris, bioparticles have important roles spanning from regulating cellular functions to possibly influencing global climate. Understanding their structures, functions, and properties provides the necessary tools to expand our fundamental knowledge of biological

Bioparticles comprise a diverse amount of materials ubiquitously present in nature. From proteins to aerosolized biological debris, bioparticles have important roles spanning from regulating cellular functions to possibly influencing global climate. Understanding their structures, functions, and properties provides the necessary tools to expand our fundamental knowledge of biological systems and exploit them for useful applications. In order to contribute to this efforts, the work presented in this dissertation focuses on the study of electrokinetic properties of liposomes and novel applications of bioaerosol analysis. Using immobilized lipid vesicles under the influence of modest (less than 100 V/cm) electric fields, a novel strategy for bionanotubule fabrication with superior throughput and simplicity was developed. Fluorescence and bright field microscopy was used to describe the formation of these bilayer-bound cylindrical structures, which have been previously identified in nature (playing crucial roles in intercellular communication) and made synthetically by direct mechanical manipulation of membranes. In the biological context, the results of this work suggest that mechanical electrostatic interaction may play a role in the shape and function of individual biological membranes and networks of membrane-bound structures. A second project involving liposomes focused on membrane potential measurements in vesicles containing trans-membrane pH gradients. These types of gradients consist of differential charge states in the lipid bilayer leaflets, which have been shown to greatly influence the efficacy of drug targeting and the treatment of diseases such as cancer. Here, these systems are qualitatively and quantitatively assessed by using voltage-sensitive membrane dyes and fluorescence spectroscopy. Bioaerosol studies involved exploring the feasibility of a fingerprinting technology based on current understanding of cellular debris in aerosols and arguments regarding sampling, sensitivity, separations and detection schemes of these debris. Aerosolized particles of cellular material and proteins emitted by humans, animals and plants can be considered information-rich packets that carry biochemical information specific to the living organisms present in the collection settings. These materials could potentially be exploited for identification purposes. Preliminary studies evaluated protein concentration trends in both indoor and outdoor locations. Results indicated that concentrations correlate to certain conditions of the collection environment (e.g. extent of human presence), supporting the idea that bioaerosol fingerprinting is possible.
ContributorsCastillo Gutiérrez, Josemar Andreina (Author) / Hayes, Mark A. (Thesis advisor) / Herckes, Pierre (Committee member) / Ghrilanda, Giovanna (Committee member) / Arizona State University (Publisher)
Created2011
150024-Thumbnail Image.png
Description
Chemical and mineralogical data from Mars shows that the surface has been chemically weathered on local to regional scales. Chemical trends and the types of chemical weathering products present on the surface and their abundances can elucidate information about past aqueous processes. Thermal-infrared (TIR) data and their respective models are

Chemical and mineralogical data from Mars shows that the surface has been chemically weathered on local to regional scales. Chemical trends and the types of chemical weathering products present on the surface and their abundances can elucidate information about past aqueous processes. Thermal-infrared (TIR) data and their respective models are essential for interpreting Martian mineralogy and geologic history. However, previous studies have shown that chemical weathering and the precipitation of fine-grained secondary silicates can adversely affect the accuracy of TIR spectral models. Furthermore, spectral libraries used to identify minerals on the Martian surface lack some important weathering products, including poorly-crystalline aluminosilicates like allophane, thus eliminating their identification in TIR spectral models. It is essential to accurately interpret TIR spectral data from chemically weathered surfaces to understand the evolution of aqueous processes on Mars. Laboratory experiments were performed to improve interpretations of TIR data from weathered surfaces. To test the accuracy of deriving chemistry of weathered rocks from TIR spectroscopy, chemistry was derived from TIR models of weathered basalts from Baynton, Australia and compared to actual weathering rind chemistry. To determine how specific secondary silicates affect the TIR spectroscopy of weathered basalts, mixtures of basaltic minerals and small amounts of secondary silicates were modeled. Poorly-crystalline aluminosilicates were synthesized and their TIR spectra were added to spectral libraries. Regional Thermal Emission Spectrometer (TES) data were modeled using libraries containing these poorly-crystalline aluminosilicates to test for their presence on the Mars. Chemistry derived from models of weathered Baynton basalts is not accurate, but broad chemical weathering trends can be interpreted from the data. TIR models of mineral mixtures show that small amounts of crystalline and amorphous silicate weathering products (2.5-5 wt.%) can be detected in TIR models and can adversely affect modeled plagioclase abundances. Poorly-crystalline aluminosilicates are identified in Northern Acidalia, Solis Planum, and Meridiani. Previous studies have suggested that acid sulfate weathering was the dominant surface alteration process for the past 3.5 billion years; however, the identification of allophane indicates that alteration at near-neutral pH occurred on regional scales and that acid sulfate weathering is not the only weathering process on Mars.
ContributorsRampe, Elizabeth Barger (Author) / Sharp, Thomas G (Thesis advisor) / Christensen, Phillip (Committee member) / Hervig, Richard (Committee member) / Shock, Everett (Committee member) / Williams, Lynda (Committee member) / Arizona State University (Publisher)
Created2011
149677-Thumbnail Image.png
Description
Applications of non-traditional stable isotope variations are moving beyond geosciences to biomedicine, made possible by advances in multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS) technology. Mass-dependent isotope variation can provide information about the sources of elements and the chemical reactions that they undergo. Iron and calcium isotope systematics in

Applications of non-traditional stable isotope variations are moving beyond geosciences to biomedicine, made possible by advances in multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS) technology. Mass-dependent isotope variation can provide information about the sources of elements and the chemical reactions that they undergo. Iron and calcium isotope systematics in biomedicine are relatively unexplored but have great potential scientific interest due to their essential nature in metabolism. Iron, a crucial element in biology, fractionates during biochemically relevant reactions. To test the extent of this fractionation in an important reaction process, equilibrium iron isotope fractionation during organic ligand exchange was determined. The results show that iron fractionates during organic ligand exchange, and that isotope enrichment increases as a function of the difference in binding constants between ligands. Additionally, to create a mass balance model for iron in a whole organism, iron isotope compositions in a whole mouse and in individual mouse organs were measured. The results indicate that fractionation occurs during transfer between individual organs, and that the whole organism was isotopically light compared with food. These two experiments advance our ability to interpret stable iron isotopes in biomedicine. Previous research demonstrated that calcium isotope variations in urine can be used as an indicator of changes in net bone mineral balance. In order to measure calcium isotopes by MC-ICP-MS, a chemical purification method was developed to quantitatively separate calcium from other elements in a biological matrix. Subsequently, this method was used to evaluate if calcium isotopes respond when organisms are subjected to conditions known to induce bone loss: 1) Rhesus monkeys were given an estrogen-suppressing drug; 2) Human patients underwent extended bed rest. In both studies, there were rapid, detectable changes in calcium isotope compositions from baseline - verifying that calcium isotopes can be used to rapidly detect changes in bone mineral balance. By characterizing iron isotope fractionation in biologically relevant processes and by demonstrating that calcium isotopes vary rapidly in response to bone loss, this thesis represents an important step in utilizing these isotope systems as a diagnostic and mechanistic tool to study the metabolism of these elements in vivo.
ContributorsMorgan, Jennifer Lynn Louden (Author) / Anbar, Ariel D. (Thesis advisor) / Wasylenki, Laura E. (Committee member) / Jones, Anne K. (Committee member) / Shock, Everett (Committee member) / Arizona State University (Publisher)
Created2011
148089-Thumbnail Image.png
Description

In this study, the influence of fluid mixing on temperature and geochemistry of hot spring fluids is investigated. Yellowstone National Park (YNP) is home to a diverse range of hot springs with varying temperature and chemistry. The mixing zone of interest in this paper, located in Geyser Creek, YNP, has

In this study, the influence of fluid mixing on temperature and geochemistry of hot spring fluids is investigated. Yellowstone National Park (YNP) is home to a diverse range of hot springs with varying temperature and chemistry. The mixing zone of interest in this paper, located in Geyser Creek, YNP, has been a point of interest since at least the 1960’s (Raymahashay, 1968). Two springs, one basic (~pH 7) and one acidic (~pH 3) mix together down an outflow channel. There are visual bands of different photosynthetic pigments which suggests the creation of temperature and chemical gradients due to the fluids mixing. In this study, to determine if fluid mixing is driving these changes of temperature and chemistry in the system, a model that factors in evaporation and cooling was developed and compared to measured temperature and chemical data collected downstream. Comparison of the modeled temperature and chemistry to the measured values at the downstream mixture shows that many of the ions, such as Cl⁻, F⁻, and Li⁺, behave conservatively with respect to mixing. This indicates that the influence of mixing accounts for a large proportion of variation in the chemical composition of the system. However, there are some chemical constituents like CH₄, H₂, and NO₃⁻, that were not conserved, and the concentrations were either depleted or increased in the downstream mixture. Some of these constituents are known to be used by microorganisms. The development of this mixing model can be used as a tool for predicting biological activity as well as building the framework for future geochemical and computational models that can be used to understand the energy availability and the microbial communities that are present.

ContributorsOrrill, Brianna Isabel (Author) / Shock, Everett (Thesis director) / Howells, Alta (Committee member) / School of Life Sciences (Contributor) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
149926-Thumbnail Image.png
Description
A new challenge on the horizon is to utilize the large amounts of protein found in the atmosphere to identify different organisms from which the protein originated. Included here is work investigating the presence of identifiable patterns of different proteins collected from the air and biological samples for the purposes

A new challenge on the horizon is to utilize the large amounts of protein found in the atmosphere to identify different organisms from which the protein originated. Included here is work investigating the presence of identifiable patterns of different proteins collected from the air and biological samples for the purposes of remote identification. Protein patterns were generated using high performance liquid chromatography (HPLC). Patterns created could identify high-traffic and low-traffic indoor spaces. Samples were collected from the air using air pumps to draw air through a filter paper trapping particulates, including large amounts of shed protein matter. In complimentary research aerosolized biological samples were collected from various ecosystems throughout Ecuador to explore the relationship between environmental setting and aerosolized protein concentrations. In order to further enhance protein separation and produce more detailed patterns for the identification of individual organisms of interest; a novel separation device was constructed and characterized. The separation device incorporates a longitudinal gradient as well as insulating dielectrophoretic features within a single channel. This design allows for the production of stronger local field gradients along a global gradient allowing particles to enter, initially transported through the channel by electrophoresis and electroosmosis, and to be isolated according to their characteristic physical properties, including charge, polarizability, deformability, surface charge mobility, dielectric features, and local capacitance. Thus, different types of particles are simultaneously separated at different points along the channel distance given small variations of properties. The device has shown the ability to separate analytes over a large dynamic range of size, from 20 nm to 1 μm, roughly the size of proteins to the size of cells. In the study of different sized sulfate capped polystyrene particles were shown to be selectively captured as well as concentrating particles from 103 to 106 times. Qualitative capture and manipulation of β-amyloid fibrils were also shown. The results demonstrate the selective focusing ability of the technique; and it may form the foundation for a versatile tool for separating complex mixtures. Combined this work shows promise for future identification of individual organisms from aerosolized protein as well as for applications in biomedical research.
ContributorsStaton, Sarah J. R (Author) / Hayes, Mark A. (Committee member) / Anbar, Ariel D (Committee member) / Shock, Everett (Committee member) / Williams, Peter (Committee member) / Arizona State University (Publisher)
Created2011
149817-Thumbnail Image.png
Description
Atmospheric particulate matter has a substantial impact on global climate due to its ability to absorb/scatter solar radiation and act as cloud condensation nuclei (CCN). Yet, little is known about marine aerosol, in particular, the carbonaceous fraction. In the present work, particulate matter was collected, using High Volume (HiVol) samplers,

Atmospheric particulate matter has a substantial impact on global climate due to its ability to absorb/scatter solar radiation and act as cloud condensation nuclei (CCN). Yet, little is known about marine aerosol, in particular, the carbonaceous fraction. In the present work, particulate matter was collected, using High Volume (HiVol) samplers, onto quartz fiber substrates during a series of research cruises on the Atlantic Ocean. Samples were collected on board the R/V Endeavor on West–East (March–April, 2006) and East–West (June–July, 2006) transects in the North Atlantic, as well as on the R/V Polarstern during a North–South (October–November, 2005) transect along the western coast of Europe and Africa. The aerosol total carbon (TC) concentrations for the West–East (Narragansett, RI, USA to Nice, France) and East–West (Heraklion, Crete, Greece to Narragansett, RI, USA) transects were generally low over the open ocean (0.36±0.14 μg C/m3) and increased as the ship approached coastal areas (2.18±1.37 μg C/m3), due to increased terrestrial/anthropogenic aerosol inputs. The TC for the North–South transect samples decreased in the southern hemisphere with the exception of samples collected near the 15th parallel where calculations indicate the air mass back trajectories originated from the continent. Seasonal variation in organic carbon (OC) was seen in the northern hemisphere open ocean samples with average values of 0.45 μg/m3 and 0.26 μg/m3 for spring and summer, respectively. These low summer time values are consistent with SeaWiFS satellite images that show decreasing chlorophyll a concentration (a proxy for phytoplankton biomass) in the summer. There is also a statistically significant (p<0.05) decline in surface water fluorescence in the summer. Moreover, examination of water–soluble organic carbon (WSOC) shows that the summer aerosol samples appear to have a higher fraction of the lower molecular weight material, indicating that the samples may be more oxidized (aged). The seasonal variation in aerosol content seen during the two 2006 cruises is evidence that a primary biological marine source is a significant contributor to the carbonaceous particulate in the marine atmosphere and is consistent with previous studies of clean marine air masses.
ContributorsHill, Hansina Rae (Author) / Herckes, Pierre (Thesis advisor) / Westerhoff, Paul (Committee member) / Hartnett, Hilairy (Committee member) / Arizona State University (Publisher)
Created2011
150107-Thumbnail Image.png
Description
Titanium dioxide (TiO2) nanomaterial use is becoming more prevalent as is the likelihood of human exposure and environmental release. The goal of this thesis is to develop analytical techniques to quantify the level of TiO2 in complex matrices to support environmental, health, and safety research of TiO2 nanomaterials. A pharmacokinetic

Titanium dioxide (TiO2) nanomaterial use is becoming more prevalent as is the likelihood of human exposure and environmental release. The goal of this thesis is to develop analytical techniques to quantify the level of TiO2 in complex matrices to support environmental, health, and safety research of TiO2 nanomaterials. A pharmacokinetic model showed that the inhalation of TiO2 nanomaterials caused the highest amount to be absorbed and distributed throughout the body. Smaller nanomaterials (< 5nm) accumulated in the kidneys before clearance. Nanoparticles of 25 nm diameter accumulated in the liver and spleen and were cleared from the body slower than smaller nanomaterials. A digestion method using nitric acid, hydrofluoric acid, and hydrogen peroxide was found to digest organic materials and TiO2 with a recovery of >80%. The samples were measured by inductively coupled plasma-mass spectrometry (ICP-MS) and the method detection limit was 600 ng of Ti. An intratracheal instillation study of TiO2 nanomaterials in rats found anatase TiO2 nanoparticles in the caudal lung lobe of rats 1 day post instillation at a concentration of 1.2 ug/mg dry tissue, the highest deposition rate of any TiO2 nanomaterial. For all TiO2 nanomaterial morphologies the concentrations in the caudal lobes were significantly higher than those in the cranial lobes. In a study of TiO2 concentration in food products, white colored foods or foods with a hard outer shell had higher concentrations of TiO2. Hostess Powdered Donettes were found to have the highest Ti mass per serving with 200 mg Ti. As much as 3.8% of the total TiO2 mass was able to pass through a 0.45 um indicating that some of the TiO2 is likely nanosized. In a study of TiO2 concentrations in personal care products and paints, the concentration of TiO2 was as high as 117 ug/mg in Benjamin Moore white paint and 70 ug/mg in a Neutrogena sunscreen. Greater than 6% of Ti in one sunscreen was able to pass through a 0.45 um filter. The nanosized TiO2 in food products and personal care products may release as much as 16 mg of nanosized TiO2 per individual per day to wastewater.
ContributorsWeir, Alex Alan (Author) / Westerhoff, Paul K (Thesis advisor) / Hristovski, Kiril (Committee member) / Herckes, Pierre (Committee member) / Arizona State University (Publisher)
Created2011
152282-Thumbnail Image.png
Description
Black carbon (BC) is the product of incomplete combustion of biomass and fossil fuels. It is found ubiquitously in nature and is relevant to studies in atmospheric science, soil science, oceanography, and anthropology. Black carbon is best described using a combustion continuum that sub-classifies BC into slightly charred biomass, char,

Black carbon (BC) is the product of incomplete combustion of biomass and fossil fuels. It is found ubiquitously in nature and is relevant to studies in atmospheric science, soil science, oceanography, and anthropology. Black carbon is best described using a combustion continuum that sub-classifies BC into slightly charred biomass, char, charcoal and soot. These sub-classifications range in particle size, formation temperature, and relative reactivity. Interest in BC has increased because of its role in the long-term storage of organic matter and the biogeochemistry of urban areas. The global BC budget is unbalanced. Production of BC greatly outweighs decomposition of BC. This suggests that there are unknown or underestimated BC removal processes, and it is likely that some of these processes are occurring in soils. However, little is known about BC reactivity in soil and especially in desert soil. This work focuses on soot BC, which is formed at higher temperatures and has a lower relative reactivity than other forms of BC. Here, I assess the contribution of soot BC to central AZ soils and use the isotopic composition of soot BC to identify sources of soot BC. Soot BC is a significant (31%) fraction of the soil organic matter in central AZ and this work suggests that desert and urban soils may be a storage reservoir for soot BC. I further identify previously unknown removal processes of soot BC found naturally in soil and demonstrate that soil soot BC undergoes abiotic (photo-oxidation) and biotic reactions. Not only is soot BC degraded by these processes, but its chemical composition is altered, suggesting that soot BC contains some chemical moieties that are more reactive than others. Because soot BC demonstrates both refractory and reactive character, it is likely that the structure of soot BC; therefore, its interactions in the environment are complex and it is not simply a recalcitrant material.
ContributorsHamilton, George (Author) / Hartnett, Hilairy E (Thesis advisor) / Herckes, Pierre (Committee member) / Hall, Sharon (Committee member) / Arizona State University (Publisher)
Created2013
152162-Thumbnail Image.png
Description
Stable isotopes were measured in the groundwaters of the Salt River Valley basin in central Arizona to explore the utility of stable isotopes for sourcing recharge waters and engineering better well designs. Delta values for the sampled groundwaters range from -7.6‰ to -10‰ in 18O and -60‰ to -91‰ in

Stable isotopes were measured in the groundwaters of the Salt River Valley basin in central Arizona to explore the utility of stable isotopes for sourcing recharge waters and engineering better well designs. Delta values for the sampled groundwaters range from -7.6‰ to -10‰ in 18O and -60‰ to -91‰ in D and display displacements off the global meteoric water line indicative of surficial evaporation during river transport into the area. Groundwater in the basin is all derived from top-down river recharge; there is no evidence of ancient playa waters even in the playa deposits. The Salt and Verde Rivers are the dominant source of groundwater for the East Salt River valley- the Agua Fria River also contributes significantly to the West Salt River Valley. Groundwater isotopic compositions are generally more depleted in 18O and D with depth, indicating past recharge in cooler climates, and vary within subsurface aquifer layers as sampled during well drilling. When isotopic data were evaluated together with geologic and chemical analyses and compared with data from the final well production water it was often possible to identify: 1) which horizons are the primary producers of groundwater flow and how that might change with time, 2) the chemical exchange of cations and anions via water-rock interaction during top-down mixing of recharge water with older waters, 3) how much well production might be lost if arsenic-contributing horizons were sealed off, and 4) the extent to which replacement wells tap different subsurface water sources. In addition to identifying sources of recharge, stable isotopes offer a new and powerful approach for engineering better and more productive water wells.
ContributorsBond, Angela Nicole (Author) / Knauth, Paul (Thesis advisor) / Hartnett, Hilairy (Committee member) / Shock, Everett (Committee member) / Arizona State University (Publisher)
Created2010
152167-Thumbnail Image.png
Description
Contaminants of emerging concern (CECs) present in wastewater effluent can threat its safe discharge or reuse. Additional barriers of protection can be provided using advanced or natural treatment processes. This dissertation evaluated ozonation and constructed wetlands to remove CECs from wastewater effluent. Organic CECs can be removed by hydroxyl radical

Contaminants of emerging concern (CECs) present in wastewater effluent can threat its safe discharge or reuse. Additional barriers of protection can be provided using advanced or natural treatment processes. This dissertation evaluated ozonation and constructed wetlands to remove CECs from wastewater effluent. Organic CECs can be removed by hydroxyl radical formed during ozonation, however estimating the ozone demand of wastewater effluent is complicated due to the presence of reduced inorganic species. A method was developed to estimate ozone consumption only by dissolved organic compounds and predict trace organic oxidation across multiple wastewater sources. Organic and engineered nanomaterial (ENM) CEC removal in constructed wetlands was investigated using batch experiments and continuous-flow microcosms containing decaying wetland plants. CEC removal varied depending on their physico-chemical properties, hydraulic residence time (HRT) and relative quantities of plant materials in the microcosms. At comparable HRTs, ENM removal improved with higher quantity of plant materials due to enhanced sorption which was verified in batch-scale studies with plant materials. A fate-predictive model was developed to evaluate the role of design loading rates on organic CEC removal. Areal removal rates increased with hydraulic loading rates (HLRs) and carbon loading rates (CLRs) unless photolysis was the dominant removal mechanism (e.g. atrazine). To optimize CEC removal, wetlands with different CLRs can be used in combination without lowering the net HLR. Organic CEC removal in denitrifying conditions of constructed wetlands was investigated and selected CECs (e.g. estradiol) were found to biotransform while denitrification occurred. Although level of denitrification was affected by HRT, similar impact on estradiol was not observed due to a dominant effect from plant biomass quantity. Overall, both modeling and experimental findings suggest considering CLR as an equally important factor with HRT or HLR to design constructed wetlands for CEC removal. This dissertation provided directions to select design parameters for ozonation (ozone dose) and constructed wetlands (design loading rates) to meet organic CEC removal goals. Future research is needed to understand fate of ENMs during ozonation and quantify the contributions from different transformation mechanisms occurring in the wetlands to incorporate in a model and evaluate the effect of wetland design.
ContributorsSharif, Fariya (Author) / Westerhoff, Paul (Thesis advisor) / Halden, Rolf (Committee member) / Fox, Peter (Committee member) / Herckes, Pierre (Committee member) / Arizona State University (Publisher)
Created2013