Matching Items (5)
157426-Thumbnail Image.png
Description
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is the 10th leading cause of death, worldwide. The prevalence of drug-resistant clinical isolates and the paucity of newly-approved antituberculosis drugs impedes the successful eradication of Mtb. Bacteria commonly use two-component systems (TCS) to sense their environment and genetically modulate adaptive responses.

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is the 10th leading cause of death, worldwide. The prevalence of drug-resistant clinical isolates and the paucity of newly-approved antituberculosis drugs impedes the successful eradication of Mtb. Bacteria commonly use two-component systems (TCS) to sense their environment and genetically modulate adaptive responses. The prrAB TCS is essential in Mtb, thus representing an auspicious drug target; however, the inability to generate an Mtb ΔprrAB mutant complicates investigating how this TCS contributes to pathogenesis. Mycobacterium smegmatis, a commonly used M. tuberculosis genetic surrogate was used here. This work shows that prrAB is not essential in M. smegmatis. During ammonium stress, the ΔprrAB mutant excessively accumulates triacylglycerol lipids, a phenotype associated with M. tuberculosis dormancy and chronic infection. Additionally, triacylglycerol biosynthetic genes were induced in the ΔprrAB mutant relative to the wild-type and complementation strains during ammonium stress. Next, RNA-seq was used to define the M. smegmatis PrrAB regulon. PrrAB regulates genes participating in respiration, metabolism, redox balance, and oxidative phosphorylation. The M. smegmatis ΔprrAB mutant is compromised for growth under hypoxia, is hypersensitive to cyanide, and fails to induce high-affinity respiratory genes during hypoxia. Furthermore, PrrAB positively regulates the hypoxia-responsive dosR TCS response regulator, potentially explaining the hypoxia-mediated growth defects in the ΔprrAB mutant. Despite inducing genes encoding the F1F0 ATP synthase, the ΔprrAB mutant accumulates significantly less ATP during aerobic, exponential growth compared to the wild-type and complementation strains. Finally, the M. smegmatis ΔprrAB mutant exhibited growth impairment in media containing gluconeogenic carbon sources. M. tuberculosis mutants unable to utilize these substrates fail to establish chronic infection, suggesting that PrrAB may regulate Mtb central carbon metabolism in response to chronic infection. In conclusion, 1) prrAB is not universally essential in mycobacteria; 2) M. smegmatis PrrAB regulates genetic responsiveness to nutrient and oxygen stress; and 3) PrrAB may provide feed-forward control of the DosRS TCS and dormancy phenotypes. The data generated in these studies provide insight into the mycobacterial PrrAB TCS transcriptional regulon, PrrAB essentiality in Mtb, and how PrrAB may mediate stresses encountered by Mtb during the transition to chronic infection.
ContributorsMaarsingh, Jason (Author) / Haydel, Shelley E (Thesis advisor) / Roland, Kenneth (Committee member) / Sandrin, Todd (Committee member) / Bean, Heather (Committee member) / Arizona State University (Publisher)
Created2019
171573-Thumbnail Image.png
Description
Mycobacterial infections, as represented by leprosy and tuberculosis, have persisted as human pathogens for millennia. Their environmental counterparts, nontuberculous mycobacteria (NTM), are commodious infectious agents endowed with extensive innate and acquired antimicrobial resistance. The current drug development process selects for antibiotics with high specificity for definitive targets within bacterial metabolic

Mycobacterial infections, as represented by leprosy and tuberculosis, have persisted as human pathogens for millennia. Their environmental counterparts, nontuberculous mycobacteria (NTM), are commodious infectious agents endowed with extensive innate and acquired antimicrobial resistance. The current drug development process selects for antibiotics with high specificity for definitive targets within bacterial metabolic and replication pathways. Because these compounds demonstrate limited efficacy against mycobacteria, novel antimycobacterial agents with unconventional mechanisms of action were identified. Two highly resistant NTMs, Mycobacterium abscessus (Mabs) a rapid-growing respiratory, skin, and soft tissue pathogen, and Mycobacterium ulcerans (MU), the causative agent of Buruli ulcer, were selected as targets. Compounds that indicated antimicrobial activity against other highly resistant pathogens were selected for initial screening. Antimicrobial peptides (AMPs) have demonstrated activity against a variety of bacterial pathogens, including mycobacterial species. Designed antimicrobial peptides (dAMPs), rationally-designed and synthetic contingents, combine iterative features of natural AMPs to achieve superior antimicrobial activity in resistant pathogens. Initial screening identified two dAMPs, RP554 and RP557, with bactericidal activity against Mabs. Clay-associated ions have previously demonstrated bactericidal activity against MU. Synthetic and customizable aluminosilicates have also demonstrated adsorption of bacterial cells and toxins. On this basis, two aluminosilicate materials, geopolymers (GP) and ion-exchange nanozeolites (IE-nZeos), were screened for antimicrobial activity against MU and its fast-growing relative, Mycobacterium marinum (Mmar). GPs demonstrated adsorption of MU cells and mycolactone, a secreted, lipophilic toxin, whereas Cu-nZeos and Ag-nZeos demonstrated antibacterial activity against MU and Mmar. Cumulatively, these results indicate that an integrative drug selection process may yield a new generation of antimycobacterial agents.
ContributorsDermody, Roslyn June (Author) / Haydel, Shelley E (Thesis advisor) / Bean, Heather (Committee member) / Nickerson, Cheryl (Committee member) / Stephanopoulos, Nicholas (Committee member) / Arizona State University (Publisher)
Created2022
154032-Thumbnail Image.png
Description
This dissertation studies the larger issue of antibiotic resistance with respect to how antibiotics are being introduced into the environment, focusing on two major anthropogenic pathways: animal husbandry for human consumption, and the recycling of wastewater and municipal sludge generated during conventional biological sewage treatment.

For animal production on land

This dissertation studies the larger issue of antibiotic resistance with respect to how antibiotics are being introduced into the environment, focusing on two major anthropogenic pathways: animal husbandry for human consumption, and the recycling of wastewater and municipal sludge generated during conventional biological sewage treatment.

For animal production on land (agriculture) antibiotics are often used for growth enhancement and increased feed efficiency. For animal production in water (aquaculture) antibiotics are often used as a prophylactic. I found that the same antibiotics are being used in both industries and that the same strains of human pathogens have also been isolated from both sources, expressing identical resistance mechanisms. In U.S. seafood, five out of 47 antibiotics screened for were detected at levels of 0.3 to 7.7 ng/g fresh weight. Although compliant with FDA regulations, the risk for resistance still exists, as even low antibiotic concentrations have been shown to exert selective pressure on bacteria.

Similarly low concentrations of antibiotics were found in U.S. biosolids at levels of 0.6 to 19.1 ng/g dry weight. Of the five antibiotics detected, two have never been reported before in biosolids. Three have never been reported before in U.S. biosolids. Using the raw numbers obtained from antibiotic screenings in biosolids, I assessed the impact of employing four different LC-MS/MS methods, concluding that analysts should experimentally determine the most appropriate quantitation method based on the analyte targeted, matrix investigated, and research goals pursued. Preferred quantitation approaches included the isotope dilution method with use of an analogous standard and, although time and resource demanding, the method of standard addition.

In conclusion, antibiotics introduced into the environment via agriculture, aquaculture, and wastewater recycling pose a combination of chemical and biological threats. Aside from exerting outright chemical toxicity to non-target organisms, antibiotic residues can promote the development of multi-drug resistance in human pathogens. Public health protection approaches to stem the risks posed by animal husbandry may include reserving drugs for exclusive, human use, decreasing their usage altogether, improving reporting efforts, reevaluating existing regulations on agricultural and aquacultural antibiotic usage, and improved risk assessment for biosolids application on land.
ContributorsDone, Hansa Yi-Yun (Author) / Halden, Rolf U. (Thesis advisor) / Haydel, Shelley E (Committee member) / Abbaszadegan, Morteza (Committee member) / Arizona State University (Publisher)
Created2015
168825-Thumbnail Image.png
Description
For untargeted volatile metabolomics analyses, comprehensive two-dimensional gas chromatography (GC×GC) is a powerful tool for separating complex mixtures and can provide highly specific information about the chemical composition of a variety of samples. With respect to human disease, the application of GC×GC in untargeted metabolomics is contributing to the development

For untargeted volatile metabolomics analyses, comprehensive two-dimensional gas chromatography (GC×GC) is a powerful tool for separating complex mixtures and can provide highly specific information about the chemical composition of a variety of samples. With respect to human disease, the application of GC×GC in untargeted metabolomics is contributing to the development of diagnostics for a range of diseases, most notably bacterial infections. Pseudomonas aeruginosa, in particular, is an important human pathogen, and for individuals with cystic fibrosis (CF), chronic P. aeruginosa lung infections significantly increase morbidity and mortality. Developing non-invasive tools that detect these infections earlier is critical for improving patient outcomes, and untargeted profiling of P. aeruginosa volatile metabolites could be leveraged to meet this challenge. The work presented in this dissertation serves as a case study of the application of GC×GC in this area.Using headspace solid-phase microextraction and time-of-flight mass spectrometry coupled with GC×GC (HS-SPME GC×GC-TOFMS), the volatile metabolomes of P. aeruginosa isolates from early and late chronic CF lung infections were characterized. Through this study, the size of the P. aeruginosa pan-volatilome was increased by almost 40%, and differences in the relative abundances of the volatile metabolites between early- and late-infection isolates were identified. These differences were also strongly associated with isolate phenotype. Subsequent analyses sought to connect these metabolome-phenome trends to the genome by profiling the volatile metabolomes of P. aeruginosa strains harboring mutations in genes that are important for regulating chronic infection phenotypes. Subsets of volatile metabolites that accurately distinguish between wild-type and mutant strains were identified. Together, these results highlight the utility of GC×GC in the search for prognostic volatile biomarkers for P. aeruginosa CF lung infections. Finally, the complex data sets acquired from untargeted GC×GC studies pose major challenges in downstream statistical analysis. Missing data, in particular, severely limits even the most robust statistical tools and must be remediated, commonly through imputation. A comparison of imputation strategies showed that algorithmic approaches such as Random Forest have superior performance over simpler methods, and imputing within replicate samples reinforces volatile metabolite reproducibility.
ContributorsDavis, Trenton James (Author) / Bean, Heather D (Thesis advisor) / Haydel, Shelley E (Committee member) / Lake, Douglas F (Committee member) / Runger, George C (Committee member) / Arizona State University (Publisher)
Created2022
190821-Thumbnail Image.png
Description
Mycobacterium tuberculosis (Mtb), the etiological agent of the tuberculosis disease, is estimated to infect one-fourth of the human population and is responsible for 1.5 million deaths annually. The increased emergence of bacterial resistance to clinical interventions highlights the lack in development of novel antimicrobial therapeutics. Prototypical bacterial two-component systems (TCS)

Mycobacterium tuberculosis (Mtb), the etiological agent of the tuberculosis disease, is estimated to infect one-fourth of the human population and is responsible for 1.5 million deaths annually. The increased emergence of bacterial resistance to clinical interventions highlights the lack in development of novel antimicrobial therapeutics. Prototypical bacterial two-component systems (TCS) allow for sensing of extracellular stimuli and relay thereof to create a transcriptional response. The prrAB TCS is essential for viability in Mtb, presenting itself as an attractive novel drug target. In Mtb, PrrAB is involved in the adaptation to the intra-macrophage environment and recent work implicates PrrAB in the dosR-dependent hypoxia adaptation. This work defines a direct molecular and regulatory connection between Mtb PrrAB and the dosR-dependent hypoxia response. Using electrophoretic mobility shift assays combined with surface plasmon resonance, the Mtb dosR gene is established as a specific target of PrrA, corroborated by fluorescence reporter assays demonstrating a regulatory relationship. Considering the scarce understanding of prrAB essentiality in nontuberculous mycobacteria and the presence of multiple prrAB orthologs in Mycobacterium smegmatis and Mycobacterium abscessus, CRISPR interference was utilized to evaluate the essentiality of PrrAB beyond Mtb. prrAB was found to be inessential for viability in M. smegmatis yet required for in vitro growth. Conversely, M. abscessus prrAB repression led to enhanced in vitro growth. Diarylthiazole-48 (DAT-48) displayed decreased selectivity against M. abscessus but demonstrated enhanced intrinsic activity upon prrAB repression in M. abscessus. Lastly, to aid in the rapid determination of mycobacterial drug susceptibility and the detection of mycobacterial heteroresistance, the large volume scattering imaging (LVSim) platform was adapted for mycobacteria. Using LVSim, Mtb drug susceptibility was detected phenotypically within 6 hours, and clinically relevant mycobacterial heteroresistance was detected phenotypically within 10 generations. The data generated in these studies provide insight into the essential role of PrrAB in Mtb and its involvement in the dosR-dependent hypoxia adaptation, advance the understanding of mycobacterial PrrAB essentiality and PrrAB-associated mycobacterial growth dependency. These studies further establish molecular and mechanistic connection between PrrAB and DAT-48 in Mtb and M. abscessus and develop a rapid phenotypic drug susceptibility testing platform for mycobacteria.
ContributorsHaller, Yannik Alex (Author) / Haydel, Shelley E (Thesis advisor) / Bean, Heather (Committee member) / Nickerson, Cheryl (Committee member) / Plaisier, Christopher (Committee member) / Acharya, Abhinav (Committee member) / Arizona State University (Publisher)
Created2023