Matching Items (8)
133015-Thumbnail Image.png
Description
Cleavage and polyadenylation is a step in mRNA processing in which the 3’UTR is cleaved and a polyA tail is added to create a final mature transcript. This process relies on RNA sequence elements that guide a large multimeric protein complex named the Cleavage and Polyadenylation Complex to dock on

Cleavage and polyadenylation is a step in mRNA processing in which the 3’UTR is cleaved and a polyA tail is added to create a final mature transcript. This process relies on RNA sequence elements that guide a large multimeric protein complex named the Cleavage and Polyadenylation Complex to dock on the 3’UTR and execute the cleavage reaction. Interactions of the complex with the RNA and specific dynamics of complex recruitment and formation still remain largely uncharacterized. In our lab we have identified an Adenosine residue as the nucleotide most often present at the cleavage site, although it is unclear whether this specific element is a required instructor of cleavage and polyadenylation. To address whether the Adenosine residue is necessary and sufficient for the cleavage and polyadenylation reaction, we mutated this nucleotide at the cleavage site in three C. elegans protein coding genes, forcing the expression of these wt and mutant 3’UTRs, and studied how the cleavage and polyadenylation machinery process these genes in vivo. We found that interrupting the wt sequence elements found at the cleavage site interferes with the cleavage and polyadenylation reaction, suggesting that the sequence close to the end of the transcript plays a role in modulating the site of the RNA cleavage. This activity is also gene-specific. Genes such as ges-1 showed little disruption in the cleavage of the transcript, with similar location occurring in both the wt and mutant 3’UTRs. On the other hand, mutation of the cleavage site in genes such as Y106G6H.9 caused the activation of new cryptic cleavage sites within the transcript. Taken together, my experiments suggest that the sequence elements at the cleavage site somehow participate in the reaction to guide the cleavage reaction to occur at an exact site. This work will help to better understand the mechanisms of transcription termination in vivo and will push forward research aimed to study post-transcriptional gene regulation in eukaryotes.
ContributorsSteber, Hannah Suzanne (Author) / Mangone, Marco (Thesis director) / Harris, Robin (Committee member) / LaBaer, Joshua (Committee member) / School of Life Sciences (Contributor, Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
171588-Thumbnail Image.png
Description
Embryonic and juvenile development consist of a series of complex and rapid changes driven by a suite of crucially timed developmental cues within the cell. The developmental process begins at the moment of zygote activation, “jump-started” by maternal factors such as mRNA and proteins until transcription can be zygotically-driven. Regulation

Embryonic and juvenile development consist of a series of complex and rapid changes driven by a suite of crucially timed developmental cues within the cell. The developmental process begins at the moment of zygote activation, “jump-started” by maternal factors such as mRNA and proteins until transcription can be zygotically-driven. Regulation of transcription initiation plays a crucial role in this process, as minute changes in the timing, density, and characteristics of gene expression can have drastic effects on the zygote’s development. Specific promoter elements can be linked to different patterns of transcription, driving both ubiquitous and sharply regulated gene expression, thus forming the basis for the time-sensitive developmental processes. In order to better understand the genes expressed during different stages of development and the impact of promoter elements on transcription patterns and transcript concentrations within the cell, I created a Gene Expression and Promoter Atlas in two species within the cryptic species complex, Daphnia pulex. I surveyed five embryonic and two juvenile developmental stages in both a North American and mitochondrially European Daphnia pulex utilizing developmental landmarks to visually stages embryos. A total of 17,993 genes were identified in the European species and 15,295 were identified in the North American species, with 11,551 orthologs identified between the two. I utilized the transcription start site (TSS) profiling method STRIPE-seq to identify promoter motifs and RNA-seq to survey mRNA concentration at each stage, generating a wealth of genetic data. The methodology for library construction and the dataset generated therein provide an informative basis for further comparative developmental studies and the elucidation of full gene functionality in an emerging model organism.
ContributorsWalls, Sarah (Author) / Lynch, Michael (Thesis advisor) / Raborn, R. Taylor (Committee member) / Mangoni, Marco (Committee member) / Harris, Robin (Committee member) / Arizona State University (Publisher)
Created2022
171685-Thumbnail Image.png
Description
Insecticide resistance is a continuing issue that negatively affects both public health and agriculture and allows vector-borne diseases to spread throughout the globe. To improve resistance management strategies (RMS), robust susceptibility bioassays need to be performed in order to fill the gap of the relationship between resistant and susceptible genotype

Insecticide resistance is a continuing issue that negatively affects both public health and agriculture and allows vector-borne diseases to spread throughout the globe. To improve resistance management strategies (RMS), robust susceptibility bioassays need to be performed in order to fill the gap of the relationship between resistant and susceptible genotype and phenotype, and a deeper knowledge of how bioassay data relates to vector control success or failure is imperative. A bioassay method that is infrequently used but yields robust results is the topical application bioassay, where the insect is directly treated with a constant volume and concentration of an insecticide via a syringe. To bring more attention to this method, my colleagues and I published a paper in the Journal of Visualized Experiments where the optimized protocol of the topical application bioassay for mosquitoes and fruit flies is described, and the strengths and limitations to the method are explained. To further investigate insecticide susceptibility tests, I set up my individual project where I used Aedes aegypti mosquitoes to compare the topical application bioassay to the commonly used Centers for Disease Control and Prevention (CDC) bottle bioassay and World Health Organization (WHO) tube test. The objective of this study was to test which method exhibited the most variability in mortality results, which would guide the choice of assay to determine the link between resistant and susceptible genotype and phenotype. The results showed that the topical application method did indeed exhibit the least amount of variation, followed by the CDC bottle bioassay (WHO data is currently being collected). This suggests that the topical application bioassay could be a useful tool in insecticide resistance surveillance studies, and, depending on the goal, may be better than the CDC and WHO tube tests for assessing resistance levels at a given site. This study challenges the value of the widely used CDC and WHO assays and provides a discussion on the importance of technical and practical resistance assays. This will help vector control specialists to collect accurate surveillance data that will inform effective RMS.
ContributorsAlthoff, Rachel (Author) / Huijben, Silvie (Thesis advisor) / Harris, Robin (Committee member) / Collins, James (Committee member) / Arizona State University (Publisher)
Created2022
187460-Thumbnail Image.png
Description
Precise modulation of gene expression is essential for proper tissue and cell-specific differentiation and function. Multiple distinct post-transcriptional regulatory mechanisms, such as miRNA (microRNA)-based regulation and alternative polyadenylation (APA), are an intrinsic part of this modulation and orchestrate intricate pathways to achieve and maintain balanced gene expression.MiRNA-based regulation and APA

Precise modulation of gene expression is essential for proper tissue and cell-specific differentiation and function. Multiple distinct post-transcriptional regulatory mechanisms, such as miRNA (microRNA)-based regulation and alternative polyadenylation (APA), are an intrinsic part of this modulation and orchestrate intricate pathways to achieve and maintain balanced gene expression.MiRNA-based regulation and APA function through sequence motifs located in the 3’ Untranslated Region (3’UTR) of mRNA transcripts. MiRNAs are short (~22 nt) non-coding RNA molecules that bind target sequences within the 3’UTR of an mRNA transcript, inhibiting its translation or promoting its degradation. APA occurs during RNA transcription termination and leads to the preparation of mature mRNAs with different 3’UTR lengths, allowing shorter 3’UTRs to bypass miRNA regulation. In addition to these two post-transcriptional forms of regulation, co-transcriptional mechanisms such as alternative RNA splicing, which produces distinct gene products from a precursor mRNA, are also important in controlling gene expression. While miRNA-based regulation, APA, and alternative RNA splicing are important regulatory mechanisms, there is a lack of comprehensive understanding of how they interact and communicate with each other. This thesis studies these three forms of gene regulation in the nematode C. elegans, with the goal of extracting rules and mechanisms used by each of them in development to establish and maintain somatic tissue identity. After isolating miRNA targets in multiple C. elegans somatic tissues, it was found that miRNAs can modulate the abundance of hnRNPs and SR proteins, which are known to control alternative RNA splicing in a dosage-dependent manner.To identify tissue-specific miRNAs, a nuclear fluorescent cell sorting (FACS)-based methodology named Nuc-Seq, was developed to isolate and sequence tissue-specific miRNAs from body muscle tissue. Nuc-Seq identified 2,848 muscle-specific protein-coding genes and 16 body muscle-specific miRNAs. This data was used to develop a high-quality body muscle-specific miRNA-APA Interactome which allows studies in regulatory processes in detail. Taken together, this work highlights some of the complexity of pre- and post-transcriptional gene regulation and sheds light on how miRNA-based regulation, APA, and alternative RNA splicing are interconnected and are responsible for the establishment and maintenance of tissue identity.
ContributorsSchorr, Anna L (Author) / Mangone, Marco (Thesis advisor) / Harris, Robin (Committee member) / Sharma, Shalini (Committee member) / Varsani, Arvind (Committee member) / Arizona State University (Publisher)
Created2023
165017-Thumbnail Image.png
Description
Tissue regeneration is a complex process that activates both developmental and metabolic signaling pathways (Kashio & Miura, 2020). The wing imaginal disc in Drosophila melanogaster has been invaluable in discerning what pathways are activated during tissue regeneration, which is typically done by genetically or physically wounding the wing disc and

Tissue regeneration is a complex process that activates both developmental and metabolic signaling pathways (Kashio & Miura, 2020). The wing imaginal disc in Drosophila melanogaster has been invaluable in discerning what pathways are activated during tissue regeneration, which is typically done by genetically or physically wounding the wing disc and using fluorescent markers to track different signals. However, despite its importance in other regeneration contexts (Tafesh-Edwards & Eleftherianos, 2020), immune signaling has not been well studied in this tissue. Furthermore, what we do know about tissue regeneration and immune signaling is specific to apoptotic cellular death, less is known about other types of cellular death, such as necrotic cellular death and the consequent signaling systems that result from necrosis. Drosophila have an open immune system and only possess innate immunity (Pastor-Pareja et al., 2008), making them an ideal model to study hemocyte involvement in tissue regeneration. Hemocytes are equivalent to blood cells in vertebrates, and are involved in immunological response (Kurucz et al., 2003). In this work, we observed hemocyte accumulation during injury-induced regeneration. Cellular damage was induced using a genetic ablation system known as DUAL Control, with hemipterous CA and GluR1 used to induce apoptotic and necrotic cell death respectfully. We have discovered that while hemocytes are recruited to the wing disc upon both apoptotic and necrotic injury, necrotic tissue has more hemocytes adhered than apoptotic tissue. The difference in adherence could be due to basement membrane integrity being damaged more severely in necrotic discs than apoptotic discs. Our results show that hemocytes are attracted to wing discs that have undergone necrotic damage, indicating that the immune system plays some sort of role in necrotic cellular death. Though the immune response to different types of tissue damage in Drosophila is much simpler than in vertebrate models, there are many similarities between the two, and could lead to research involving human immune signaling as it pertains to regeneration.
ContributorsZustra, Ayla (Author) / Harris, Robin (Thesis director) / Gile, Gillian (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2022-05
164228-Thumbnail Image.png
Description

Tuberous sclerosis complex (TSC) is a rare genetic disease caused by heterozygous dominant mutations in the TSC1 or TSC2 genes that affects 1/6000 newborns (Curatalo et al., 2002; de Vries & Howe, 2007). TSC has a variety of clinical manifestations ranging from hypomelanotic macules to neurological conditions such as epilepsy

Tuberous sclerosis complex (TSC) is a rare genetic disease caused by heterozygous dominant mutations in the TSC1 or TSC2 genes that affects 1/6000 newborns (Curatalo et al., 2002; de Vries & Howe, 2007). TSC has a variety of clinical manifestations ranging from hypomelanotic macules to neurological conditions such as epilepsy (Neuman & Henske, 2011; de Vries & Howe, 2007). In cases where the TSC mutations are inherited from parent to offspring (familial TSC)- the child can still exhibit more severe symptoms despite having the same TSC mutation as the parent, a phenomenon known as intrafamilial phenotypic variability (IPV) (Curatalo et al, 2002). We hypothesize that the variants in genes of the mTOR signaling pathway (genetic modifiers) may enhance or suppress mTOR pathway activity, resulting in IPV. Patient derived primary fibroblasts cell lines from two families exhibiting IPV were studied as well as an unrelated control cell line. We identified variants in IRS1, FZD5, and PIK32CG genes from children with severe phenotype in one family and variants in PIK3R3, TNFRSF19, and EIF4G1 in a severe child in another pathway. We explored the functional impact of these genes on mTOR pathway activity.

ContributorsFry, Hannah (Author) / Rangasamy, Sampath (Thesis director) / Harris, Robin (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Watts College of Public Service & Community Solut (Contributor)
Created2022-05
187397-Thumbnail Image.png
DescriptionA
ContributorsLund, Michael (Author) / Varsani, Arvind (Thesis advisor) / Upham, Nathan (Committee member) / Harris, Robin (Committee member) / Arizona State University (Publisher)
Created2023
158668-Thumbnail Image.png
Description
Regulation of transcription initiation is a critical factor in the emergence of diverse biological phenotypes, including the development of multiple cell types from a single genotype, the ability of organisms to respond to environmental cues, and the rise of heritable diseases. Transcription initiation is regulated in large part by promoter

Regulation of transcription initiation is a critical factor in the emergence of diverse biological phenotypes, including the development of multiple cell types from a single genotype, the ability of organisms to respond to environmental cues, and the rise of heritable diseases. Transcription initiation is regulated in large part by promoter regions of DNA. The identification and characterization of cis-regulatory regions, and understanding how these sequences differ across species, is a question of interest in evolution. To address this topic, I used the model organism Daphnia pulex, a well-characterized microcrustacean with an annotated genome sequence and selected a distribution of well-defined populations geographically located throughout the Midwestern US, Oregon, and Canada. Using isolated total RNA from adult, female Daphnia originating from the selected populations as well as a related taxon, Daphnia pulicaria (200,000 years diverged from D. pulex), I identified an average of over 14,000 (n=14,471) promoter regions using a novel transcription start site (TSS) profiling method, STRIPE-seq. Through the identification of sequence architecture, promoter class, conservation, and transcription start region (TSR) width, of cis-regulatory regions across the aforementioned Daphnia populations, I constructed a system for the study of promoter evolution, enabling a robust interpretation of promoter evolution in the context of the population-genetic environment. The methodology presented, coupled with the generated dataset, provides a foundation for the study of the evolution of promoters across both species and populations.
ContributorsSnyder, Shannon (Author) / Lynch, Michael (Thesis advisor) / Harris, Robin (Committee member) / Raborn, Randolph T (Committee member) / Wideman, Jeremy (Committee member) / Arizona State University (Publisher)
Created2020